Investigation of Transient Regime Transition in Inductive Plasma Generators

Robin Georg¹, Ashley Chadwick², Bassam Dally³, Georg Herdrich⁴, Francesco Romano⁵, Mirko Magarotto⁶, and Daniele Pavarin⁵

¹School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
²German Aerospace Center (DLR), Stuttgart, Germany
³Centre for Energy Technology, University of Adelaide, Adelaide, Australia
⁴Department of Industrial Engineering (DII), University of Padova, Padova, Italy
E-mail: robin.georg@adelaide.edu.au

Motivation

• Electrodesless EP using IPG
• Improves propellant flexibility and lifetime
• Enables new operating concepts:
 • In-situ resource utilisation (ISRU)
 • Atmosphere-breathing electric propulsion (ABEP)

Objective

• Develop an experimental technique that:
 • Investigates regime transition, to control propulsion characteristics
 • Is non-intrusive, to avoid disturbing conditions
 • Is time-resolved, to capture effects due to non-steady power supply or modulation

Theory

• Antenna current = antenna–plasma coupling
• Magnetic field strength = function of antenna current and plasma currents
• Light emission in visible range = skin depth, location of plasma current

Experiment

3 channels captured simultaneously at 5 MHz:
• HOKA probe = antenna current
• Linear stage = radially-resolved:
 • Magnetometer = axial magnetic field strength
 • Photodiode = light emission in visible range

Conditions:
• \(f_{\text{signal}} = 586 \text{ kHz} \)
• \(f_{\text{cycle}} \approx 300 \text{ Hz} \)
• \(\text{P}_{\text{tank}} = 28.5 \text{ Pa} \)
• \(\text{P}_{\text{inj}} = 5.8 \text{ kPa} \)
• \(\text{m}_{\text{gas}} = 2.7 \text{ g/s} \)
• Capacitive and inductive regimes

Gases tested:
• Nitrogen
• Argon–oxygen (2:1 by volume)

Preliminary Results

• Antenna current and characteristic frequency
• Clearly identify regime transition due to development of plasma current
• Duration of inductive coupling affected by propellant choice
• Measured and calculated axial magnetic field agree
• Plasma current has little effect, likely located downstream far from probe
• Argon–oxygen: ring and central emission appear at different times

Conclusions

• Identification of regime transition, and plasma current behaviour, possible at time-scale of discharge cycle
• Plasma current appears to be localised in small, downstream region
• Numerical models may need to consider transient behaviour

IPG7 and Experimental Setup

This poster was produced for the 36th International Electric Propulsion Conference in Vienna, Austria, September 19–20, 2019. Acknowledgements. The authors wish to thank the German Research Foundation for their financial contribution to the experimental campaign under Project HE 4563/3-1. Research undertaken for this report has been assisted with a grant from the Smith fund. The Smith fund does not accept any responsibility or liability from any person, company or entity that may read or rely on any written report or representations contained in this report or that person, company or entity suffers any loss (financial or otherwise) as a result.