Modeling of Electron Cyclotron Drift Instability in ExB devices: issues and problems

University of Saskatchewan, Saskatoon SK, Canada

I. Kaganovich, Y. Raitses, PPPL, Princeton USA

36th International Electric Propulsion Conference
September 15-20, 2019
University of Vienna, Austria
Motivation

• Electron Cyclotron Drift Instability– a robust kinetic instability driven by strong ExB drift (no density/magnetic field, etc gradients, nor collisions.. are required to trigger, but may be affected by all above)
• Has been well demonstrated in 1D (azimuthal) and 2D (azimuthal-axial, azimuthal-radial) simulations, 3D is not conclusive…
• Experimental evidences of small scale fluctuations
• Where we are now?
 • Relatively easy to obtain in numerical codes, many groups…
 • Conversion of simulation results into practical predictions is difficult and lagging
 • Coordinated efforts are required: codes testing and benchmarking; suite of test cases, codes verification metrics, codes validation (agreement with experiment) metrics
 • Experimental diagnostics and data
Recent history

ECDI in ExB discharges, Hall thrusters and magnetron applications

- Cavalier 2013 (linear theory)
- Lafleur 2016 - PIC, Lafleur-theory of anomalous transport
- Katz, Mikellides 2015 –theory applied to HT
- Lafleur 2017, Croes 2017 – R-θ PIC simulations, theory
Synopsis of ECDI status. I

Experiments:

Most of the measurements (Tsikata) are outside of the channel – ion sound dispersion

\[\omega = k_y c_S \quad c_S = \sqrt{T_e / m_i} \quad \lambda = 2\pi / k = 0.3 - 1.5 \text{ mm} \]

Discreet set of cyclotron resonances , wavelength <2.5 cm

\[k_y V_E = m\omega_{ce}, \ m=1,2,3,... \]

Downstream region >2.5 cm (to 12 cm): linear ion-sound like dispersion, few cm wavelengths
Synopsis of ECDI status. II

Modeling:

Semi-empirical models of anomalous mobility based on the spatial-time dependent evolution of anomalous resistivity; quasilinear/non-magnetized plasma assumption

…

…

Similar to the application to hollow cathode ion sound turbulence

Synopsis of ECDI status. III

Numerical simulations

Simplified models are used:
- 1D – azimuthal, periodic along the ExB drift direction
- 2D – azimuthal + radial with the wall boundary conditions
 (sheath, SEE), a uniform electric field is imposed
- 2D – azimuthal + axial, plasma source (not self-consistent),
 external voltage applied across anode-cathode region
- 2D - azimuthal + radial, in the full cylinder annular region ...

Instability is very robust (very strong) and can be easily observed in PIC simulations. It has been reported by several groups. Some groups insist that in the nonlinear regime the instability transits into the ion sound mode as in unmagnetized plasmas. Other groups (U Sask) show that the instability remains in the form of the set of cyclotron resonance modes and accompanied by nonlinear development of large scale modes.
Synopsis of ECDI status, I+II+III

Experiments, Modeling and Numerical simulations are not conclusive if and how ECDI is present in Hall thruster conditions

- Some form of EDI is likely to be present
- How it is saturated, nonlinear stage and consequences are not clear
- Active work is being continued

Linear regime -- **Electron Cyclotron Drift Instability (ECDI)** -- is well understood

Nonlinear regime -- **Electron Drift Instability (EDI)**?
Cyclotron resonance and Bernstein modes

\[1 + K_i + K_e = 0 \]
\[K_i = -\frac{\omega_{pi}^2}{\omega^2} \]
\[K_e = \frac{1}{k^2 \lambda_D^2} \left[1 + \frac{\omega-k_y v_0}{\sqrt{2 k_z v_{Te}}} \sum_{m=-\infty}^{\infty} I_m(k_{\perp}^2 \rho_e^2) \exp(k_{\perp}^2 \rho_e^2) Z \left(\frac{\omega-k_y v_0 - m \omega_{ce}}{\sqrt{2 k_z v_{Te}}} \right) \right] \]

Fluid resonances for

\[Z \left(\frac{\omega-k_y v_0 - m \omega_{ce}}{\sqrt{2 k_z v_{Te}}} \right) \sim \frac{\sqrt{2 k_z v_{Te}}}{\omega-k_y v_0 - m \omega_{ce}} \]

Cyclotron resonances/Bernstein modes \(\omega-k_y v_0 - m \omega_{ce} \approx 0 \)

Fluid resonances overlap at finite \(k_z \)

Transition from the set of reactive instabilities to continuous dissipative (Landau type) instability: similar to Bernstein-Landau paradox (disappearance of Landau damping in magnetized plasma)
Electron cyclotron drift instability: Reactive (fluid) resonances regimes and transition to ion sound

\[\omega - k_y v_{ExB} = m\omega_{ce} \]

\[\omega \ll k_y v_{ExB} \sim m\omega_{ce} \]

Thermal spreading due to \(k_z v_{te} \)

for relatively large \(k_z \) transition to unmagnetized ion sound instability driven by \(v_{ExB} \) beam (Gary, Sanderson, Lampe, Cavalier)

In the context of ExB discharges Adam et 2004, Boeuf, Lafleur, Ducrocq,..
Finite k_z (along the magnetic field) effects

Nonlinear broadening is similar to k_z effect
Structure of cyclotron resonances and transition to ion sound modes due to finite temperature and finite wave-vector along B

Thermal spreading due to $k_Z v_{te}$

Growth rate for relatively large k_Z transition to unmagnetized ion sound instability driven by $v_{E\times B}$ beam (Gary, Sanderson, Lampe, Cavalier)

Real frequency

Linear mechanism

Each harmonic looks like a sound wave

Unmagnetized sound wave is a sum of many
Nonlinear broadening in numerical simulations?

• Inconclusive: may be some signatures, but generally cyclotron resonances survive

• Typically well coherent (single mode?) is observed; broad spectrum would normally be expected for strong drive

• May be different in 1D and various versions of 2D simulations
Inverse cascade to longer wavelength

- Observed in 1D and 2D system
- Simulation box dependent
- Anomalous transport is dominated by long wavelengths
- Magnitude of the anomalous current depends on the size of the simulation box
- The dissipation at large scale (not included in current models) will affect the transport
Coherent modes in 1D and 2D simulations

Lafleur 2016, Boeuf .. 2017, Janhunen et al, Phys Plasmas 2018a,b; Sydorenko 2018, Zintel 2019, Charoy et 2019, Taccogna 2019

2D: azimuthal - radial

2D: azimuthal - axial

1D azimuthnal
Inverse cascade to longer wavelength

- Observed in 1D and 2D system
- Simulation box dependent

Current condensation toward long wavelength
Mode transitions towards longer wavelengths
2D azimuthal-radial
Mode transition in anomalous mobility
Increase of oscillations amplitude?

Large current in the region of the low electric field? Will mobility suffice?
Anomalous mobility in 1D simulations
Role of structures on transport
Axial electron current

Electron current vortex

t = 10.6 mks
In fact, the electron current forms a vortex (or two) in the transport region (minimal axial potential gradient)
Questions and problems:

- Inverse cascade to long wavelength is box size (and large scale dissipation) dependent.
- Large scale structures contribute to transport. How to characterize? Does the concept of averaged mobility apply?
- Ion trapping, ion rotation and nonlinear saturation.
Aim and scope

The physics of low temperature magnetized plasmas or ExB plasma devices is very specific and different from that of fusion plasmas. This distinct area of basic plasma physics has been poorly explored and is not well understood but is within the reach of current analytical and numerical capabilities as well as powerful modern diagnostics tools. The physics of magnetized plasmas and ExB devices is however complex and very non-linear and the scientific community must organize itself to better understand and quantify the properties of these plasmas.

The LANDMARK project aims at:

- providing an open forum for evaluating methods of description of plasma transport in non-fusion magnetized plasmas (e.g. ion sources, HALL thrusters, magnetrons, cusped-field thrusters...)
- defining benchmark test cases for PIC, fluid and hybrid methods
- addressing physics issues related to the questions of anomalous transport across magnetic field, instabilities, plasma-wall interactions and their influence on particle and energy transport
- facilitating international collaboration and enhance mutual understanding among researchers
- publishing benchmark results

https://www.landmark-plasma.com/
Thank you!