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This work presents a kinetic study of the plasma response in a fully magnetized plasma
expansion. A paraxial, collisionless, steady-state plasma model is used to analyze the effect
of expanding in a convergent-divergent nozzle a plasma with different types of VDF at the
plasma reservoir. The first part of the paper studies the kinetic features, such as magnetic
mirroring and anisotropy for both ions and electrons. The collective effects are analyzed by
evaluating the momentum and energy equations based on the kinetic solution. The study
of the collisionless heat fluxes allows estimating a simple closure to the fluid equation
hierarchy for the electrons. The second part of the paper analyzes the solution with two
species of electrons with disparate temperatures at the upstream source. A quasineutral
steepened profile is formed, which impacts the plasma properties along the expansion. The
collisionless electron cooling, as well as the anisotropy on the divergent side of the nozzle
are analyzed by separating the different subpopulations of electrons (free, reflected, or
doubly-trapped), of both the thermal and the suprathermal species.

I. Introduction

Magnetically expanding plasmas are present in many different schemes in nature; in magnetic clouds,1

in laser-induced plasmas,2 in plasma sources for processing,3 and in various different ways, in elec-
tric propulsion. For instance, the helicon plasma thruster,4–7 the electron cyclotron resonance thruster,8 the
applied-field magnetoplasma dynamic thruster (AF-MPDT)9 or the variable specific impulse magnetoplasma
rocket (VASIMR)10 include a magnetic nozzle to expand and accelerate the plasma beam. From a kinetic
point of view, the expansion of a magnetically channeled plasma into vacuum involves complex phenomena;
for instance, the electron trapping due to the combination of electrostatic barriers with magnetic mirror-
ing.11–15 The macroscopic effect of the spatial evolution of the distribution functions affects directly the
global performance of the nozzle; for this reason, having predictable accurate models of magnetic nozzle
expansions is becoming a critical need for the development of the abovementioned thrusters.

In this regard, fluid models are good candidates to obtain quick estimates of the mean plasma properties.16

However, it is still under discussion the way to close the fluid equation hierarchy. Polytropic cooling laws
lack of theoretical justification, and isothermal closures have demonstrated limited value. In this context,
Mart́ınez-Sańchez et al. developed a steady-state kinetic paraxial model12 which allowed to compute self-
consistently the plasma potential drop along a magnetized slender flow. Merino et al. presented later an
analogous model for unmagnetized plasma plumes.13 In both models, an isolated region on the velocity
space phase contained a doubly-trapped electron population; electrons disconnected from the upstream
source, bouncing between two locations of the divergent side of the expansion due to the combination of
magnetic mirroring and electric potential barriers. The distribution function of this population is unknown;
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in this context, Sánchez Arriaga et al. developed a time-dependent kinetic paraxial model to demonstrarte
the partial filling during the transient set-up.17 Moreover, the paraxial approximation used in the above
models disregards 2D effects and particle drifts. In a first effort to expand the model in Ref.13 to 2D, Nuez
et al. have incorporated a fluid-kinetic solution to close the electrons fluid equation hierarchy in a two-fluid
2D magnetic nozzle model,16 in the fully-magnetized limit.18

To remain aligned with the previous studies, in this paper we analyze the kinetic features of a magnetically
expanding plasma by thoroughly exploring the kinetic solution of the model in Ref.12, and by modifying the
upstream conditions to include different ion and electron distribution functions at the plasma reservoir. In
Ref.12, the ions were assumed mono-energetic, and the electrons Maxwellian. These assumptions, in principle
suitable for understanding the main features of magnetic nozzle expansions, could fall short of validity to
represent the real conditions of the plasma in some devices. For instance, when the expanding plasma
consists of two electron populations with disparate temperatures, the ambipolar plasma potential drop could
concentrate locally in a thin layer, giving rise to a quasi-neutral steepened layer, or even a double-layer.19–23

The rest of the paper is organized as follows.Section II summarizes the main features of the model so
the paper is self-explanatory. Section III divides the results in two different cases; first, the solution without
suprathermal electrons is presented. The effect of the magnetic mirror combined with the electric potential
drop is explained in detail, for both ions and electrons. As well, a fluid description of the plasma is used to
validate the kinetic results and analyze the balances in the momentum and energy equations. This will allow
to study a possible closure for the fluid equation hierarchy based on the kinetic results. The second part of
section III contains the analysis of cases with suprathermal electrons. Advanced results for the development
of anisotropy and electron cooling when a small fraction of suprathermal electrons guide the expansion are
presented. Finally, the main conclusions are summarized in section IV.

II. Modelling

The steady-state paraxial kinetic model presented here is based on the model described in Ref.12, which
is summarized for self-containedness. A plasma source is generated at z = −∞, and expand to z = ∞
through a convergent-divergent magnetic nozzle with a single maximum at z = 0. The spatial distance z
does not appear explicitly in the model, being the non-monotonic magnetic field the independent variable.
A convenient, space-like dimensionless variables is therefore defined as

ζ = sign (z) log10

(
BM
B

)
, (1)

which places the throat at ζ = 0 and scales logarithmically with B. From here, the spatial distance will be
represented by ζ.

The plasma is assumed collisionless and fully magnetized, and therefore both ions and electrons remain
attached to the magnetic line. As a direct consequence of these assumptions, all particles conserve their
mechanical energy, defined as

E =
m

2
(w2
‖ + w2

⊥) + eZφ, (2)

where m and Z represent the particle mass and charge, w‖ and w⊥ the parallel and perpendicular
components of the particle velocity to the magnetic field lines respectively, φ the ambipolar plasma potential,
and e the elementary charge.

The particle magnetic moment µ is preserved as an adiabatic invariant.

µ =
mw2
⊥

2B
, (3)

The model attempts to determine the longitudinal ambipolar plasma potential profile φ(ζ), including the
finite total potential drop φ∞ = φ(∞), of a quasi-neutral, current-free plasma beam. It will be assumed
(and confirmed by the solution) that φ(ζ) decreases monotonically.

By solving Eqs 13 and 3 for w‖ and w⊥, and setting w‖ = 0, one can identify the turning point for
particles of given E,µ, or equivalently, the maximum magnetic moment µm for a given particle energy E.

µm(ζ, E) =
E − eZφ(ζ)

B(ζ)
. (4)
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This maximum depends on the implicit relation φ(B), and it is therefore part of the solution.
The axial profile of the maximum magnetic moment will define the type of particles. The ambipolar

electric field φ(ζ) accelerates ions downstream and confines electrons upstream, while the magnetic mirror
effect slows down all particles in the convergent region and accelerates them in the divergent side of the
nozzle. These two effects combined lead to different behaviours of ions and electrons. On one hand, for ions
the curve µm always has a single minimum µiT in the convergent side at ζ = ζiT , which separates free from
reflected particles. On the other hand, electrons are divided into “Low energy” and “High energy”. While
the curve µm for high energy electrons is equivalent to the one for ions but with the minimum µeT in the
divergent side, for low energy electrons more possible topologies are allowed. Both reflected and doubly-
trapped electrons can co-exist in the divergent region. The sketch in Fig. II shows the types of particles
allowed in the expansion, which are explained in detail in Ref.12. The remaining regions not specified in
Fig. II are void of particles.

i

Free

µ < µiT , ∀ζ

Reflected

µiT < µ < µim, for ζ < ζiT

e

Free

Ee > −eφ∞, µ < µeT , ∀ζ

Reflected

Ee > −eφ∞, µeT < µ < µem, for ζ < ζeT

Ee < −eφ∞, µ < µem, for ζ < ζeT
Ee < −eφ∞, µ < µ∗eT , for ζ > ζeT

Doubly-trapped

Ee < −eφ∞, µeT < µ < µem, for ζ > ζeT

Figure 1. Sketch of the allowed particles in the model with their existence regions. µ∗eT ≡ µeT , except for those
cases without a local minimum (very low energies), in which µ∗eT ≡ µem.

For the boundary conditions of the present study, we assume upstream a mono-energetic or Maxwellian
ion distribution function and an electron distribution function consisting of two Maxwellian populations with
different temperatures.

f+e (Ee)dv
3 =

neh∗

(2π)
3/2

(
me

kTeh∗

)3/2

exp

(−Ee
Teh∗

)
dv3 +

nec∗

(2π)
3/2

(
me

kTec∗

)3/2

exp

(−Ee
Tec∗

)
dv3, (5)

with neh∗, nec∗, Teh∗ and Teh∗ reference values of density and temperature for each species. The distri-
bution function of the doubly-trapped electrons is assumed to have the same dependence as upstream.

Any macroscopic variable can be computed by integrating directly in the velocity space, or alternatively
in E,µ, the distribution function. For any variable χ, this integral is expressed as Eq. 6.

〈χ〉(ζ) =
2πB

m2

∫ ∫
dµdE

χf+(E)

|w‖(ζ, µ,E)| , (6)

The magnitudes relevant for this work are defined below:

n ≡ 〈1〉, nu = 〈w‖〉, p‖ = nT‖ = m〈c2‖〉, p⊥ = nT⊥ = m〈w2
⊥〉/2,

q‖ = m
2 〈c3‖〉 = m

2 〈w3
‖〉 − m

2 nu
3 − 3

2p‖u, q⊥ = m
2 〈w2

⊥c‖〉 = m
2 〈w2

⊥w‖〉 − p⊥u.
(7)

The profile of the ambipolar electric potential profile φ(ζ) needs to be determined so that current-free
and quasineutrality (Eq. 8) conditions are satisfied. Two additional parameters compared to the model in
Ref.12 arise from the normalization of the problem: The upstream density ratio of suprathermal electrons
α0 = neh∗/n∗, and the upstream temperature ratio between the thermal and the suprathermal populations
θ0 = Teh∗/Tec∗.

ni
n∗

= α0
neh
neh∗

+ (1− α0)
nec
nec∗

. (8)
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An iterative algorithm equivalent to the one in Ref.12 is used to obtain the self-consistent solution of the
problem, for a given value of the model parameters. Once the ambipolar potential profile φ(ζ) is determined,
any moments of the distribution function can be computed, and kinetic and macroscopic features of the
expansion can be analyzed.

For the results presented in the following sections, an upstream mean electron temperature is defined as

T e∗ = (1− α0)Tec∗ + α0Teh∗. (9)

Throughout the expansion, an effective “sonic” velocity is defined as a function of the local density ratio
α = neh/ne,

cs∗ =

√√√√ 1

mi

(
1−α
Tec

+ α
Teh

) . (10)

III. Results

A. Case α0 = 0

This section presents the analysis of the plasma response without suprathermal electrons, this is, for α0 = 0.
For this case, only two dimensionless parameters drive the problem: the ion to electron mass ratio mi/me

and the ion to electron reference temperatures Ti∗/Te∗. Notice that in this case, Te∗ = T e∗ = Tec∗. Ions
are postulated here as Maxwellian in order to retain asymptotic ion thermal effects. Two solutions are
presented, corresponding to “cold” ions, with Ti∗/Te∗ = 0.1, and “hot” ions, with Ti∗/Te∗ = 10. The results
are analyzed from both a kinetic and a fluid point of view, which allows to obtain a full perspective of the
problem.

1. Kinetic analysis

Fig. 2 shows the plasma response for Xenon, with mi/me = 2.39 · 105. The first row shows the main plasma
properties; ambipolar plasma potential and its spatial gradient (a, b), plasma density (c), and ion fluid
velocity normalized with cs∗ =

√
(Te∗ + Ti∗)/mi (d). The plasma potential drop and the final ion velocity

are lower for “hot” ions than for “cold” ions. The total potential drop necessary to slow down electrons
and fulfill quasi-neutrality and current-free conditions is lower for “hotter” ions, since the ion dynamics is
already more similar to the electron’s.

The second row of Fig. 2 shows the properties relative to the ions, and the last row the relative to
the electrons. A vertical line in the subplots of Fig. 2 indicates the location of the magnetic throat, and
therefore separates the convergent from the divergent expansion. In the convergent region, regarding the
ion temperatures, while the parallel component drops significantly for both “cold” and “hot” ions, the
perpendicular component experiences a dramatic increase for “cold” ions and remains almost unchanged
for “hot” ions. This behaviour is the result of the combination of the magnetic mirror effect and the
plasma potential drop; while the collective effect of the first one is seen as an increase of the perpendicular
temperature in the convergent region which decreases to the source value as it approaches the throat, the
plasma potential drop increases the kinetic energy proportionally to Te∗. If ions are very energetic, the effect
of the plasma potential drop in the convergent region is almost negligible, and therefore the magnetic mirror
effect dominates.

In contrast, the electron temperature is almost constant for both cases along the convergent side. In
fact, the electron VDF remains Maxwellian and isotropic, except for the small asymmetry due to the “free”
electrons. To complement the discussion, Fig. 3 shows the ion and electron VDFs in the (w‖, w⊥) plane at
three spatial locations: the source, the magnetic throat and far downstream. Those particles on the w‖ > 0
side of the plane that do not have a corresponding image particle on the w‖ < 0 side are free particles.
Regarding ions, the combination of magnetic mirroring with the increase of kinetic energy due to the electric
potential drop, explains the shape of the ion VDF shown in Fig. 3. Magnetic mirroring increases Ti⊥ along
the convergent region, but without the effect of the electric potential, it should return to the initial value
Ti∗ at the magnetic throat (which is exactly what happens for “hot” ions). However, the electric potential
increases the ion kinetic energy, and consequently, opens an empty circular region in the center of ion VDF
phase space. For “hot” ions, where E � eφ, the effect of the electric potential drop is negligible and therefore
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Figure 2. Spatial plasma properties for “cold” ions with Ti∗/Te∗ = 0.1 (solid) and “hot” ions with Ti∗/Te∗ = 10.0
(dashed).

only ions feel the magnetic mirror effect in the convergent region. On the contrary, when E ≈ eφ, the electric
potential drop has a direct impact on the ion VDF. Regarding electrons, Fig. 3 shows that at the throat,
contrary to ion VDF, the electron VDF remains almost Maxwellian.

Summarizing, the study of the ion and electron temperatures in the convergent region reveals an interest-
ing character of the expansion: the combination of the magnetic mirror effect and the plasma potential drop
is actually felt very differently by ions and electrons; while electrons remain almost Maxwellian and isotropic,
ions are strongly affected by magnetic mirroring. Although not plotted here, the developed anisotropy has
been found to depend weakly on the mass ratio but largely on Ti∗/Te∗. The expansion dynamics in the
convergent region enhances the similarities of the problem with a magnetic cusp, which Mart́ınez-Sánchez
and Ahedo studied in Ref. 24 with a very similar model. There, the converging cusp region ended in a wall
Debye sheath, while here is followed by the divergent side. The sheath of Ref. 24 and the finite potential
drop here have the same function; to confine electrostatically the electron population to fulfill the desired
electron current. The present work claims that the assumption taken by Mart́ınez-Sánchez and Ahedo of a
near Maxwellian electron VDF in the cusp was actually convenient.

Finally, Figs. 2 g), h), k) and l) show the parallel heat fluxes of parallel and perpendicular energy for ions
and electrons. The main feature is their collisionless character, which in principle, appears to be independent
of the temperature gradient.

2. Fluid analysis

The following set of equations are the corresponding first direct integrals of the Vlasov equation: continuity,
momentum and total energy. Their evaluation allows to perform, not only an independent check of the kinetic
results presented in the previous section, but also a complete study of the contribution of the different terms
along the expansion.
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Figure 3. Evolution of the initially Maxwellian ion VDF for Ti∗/Te∗ = 0.1 (left) and Ti∗/Te∗ = 10 (center), and
the corresponding Maxwellian electron VDF (right). The red vertical solid line indicates the local value of the
ion bulk velocity ui.
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nu

B
= const (11)

B
∂

∂ζ

(
mnu2

B

)
+ enZ

∂φ

∂ζ
+
∂p‖

∂ζ
− (p‖ − p⊥)

∂lnB

∂ζ
= 0 (12)

nueZφ

B
+
nu

B

[
mu2

2
+

3T‖

2
+ T⊥

]
+
q‖ + q⊥

B
= const (13)

(14)

The continuity equation is verified by the assumptions of the problem and will not be commented upon
further. The last term of the momentum equation shows the anisotropy contribution as a volumetric force,
which reflects the collective effect of the magnetic mirror phenomenon. Then, the total energy equation
shows the balance between the work of the electric field and the contribution of kinetic, thermal, and heat
flows.
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Figure 4. Relative contribution of the different terms to the equations for a),b),c) momentum and d), e), f)
total energy. Left plots are for “cold” ions, center for “hot” ions, and right for electrons.

Fig. 4 shows the contribution of the different terms in the momentum and energy equations throughout
the expansion, for “hot” ions, “cold” ions and electrons. Regarding the electrons momentum equation, it
is confirmed that the inertia term is negligible. Interestingly, the magnetic mirror effect appears to be also
negligible even in the divergent side. Therefore, the balance between the electrostatic force and the parallel
pressure gradient governs the whole expansion. Regarding ions, a different behaviour has been found for
“cold” and “hot” ions. As it was deduced from the kinetic analysis, the electrostatic force has a secondary role
in the “hot” ions expansion, being the magnetic mirror effect the dominant term (mainly in the convergent
side). Furthermore, this effect together with the pressure gradient, are developed sooner in the expansion
compared to ion convection. For “cold” ions, the equilibrium in the momentum equation is mainly between
the convective and the electrostatic forces.

Figs. 4 c), d) and e) show the balances in the total energy equation. Upstream, the perpendicular thermal
energy flow is balanced with the parallel heat flow of perpendicular energy, and therefore the dominant term
is the parallel thermal energy. For “hot” ions, the parallel heat flow also contributes in the upstream
source. Along the convergent region, the perpendicular thermal energy gets more dominant, as well as the
electric work and the convective terms (but these two last ones almost compensate each other). Finally in
the divergent region, while the heat flows vanish for both “cold” and “hot” ions, the parallel thermal flow
remains important only for the “hot” ions expansion.
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In the electron energy balance, the parallel heat flow has a higher contribution already upstream (it is
the dominant term), and remains important throughout all the expansion. In the divergent side, the electric
work balances the energy conservation.
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Figure 5. a) qe⊥ against B5/3 b) qe‖ against B c) Ratio of perpendicular conduction/convection d) Ratio of
parallel conduction/convection. Results are for “cold” ions (solid) and “hot ions (dashed).

In light of these results, it is clear that the CGL double adiabatic limit is not applicable. In addition, a
“collisional” closure where the heat flux evolves as the temperature gradient does not fit the results presented
here. In order to obtain a proper closure to the fluid equation hierarchy, the conductive and convective terms
derived from the kinetic solution are thoroughly analyzed. Fig. 5 shows different ratios involving the parallel
fluxes of parallel and perpendicular energy qe‖ and qe⊥. First, Figs. 5 a) and b) show the asymptotic
behaviour of both moments, which indeed, agrees with the recent analysis by Ramos25 et al.. Both ue and
Te� tend to an asymptotic finite value downstream, and therefore qe‖ ∝ ne, which in turn decays ∝ B. Then,
as Ramos25 et al. showed, when confined electrons dominate the expansion, Te⊥ cools down adiabatically,

and therefore Te⊥ ∝ n2/3. Since |qe⊥| ' neueTe⊥, this leads to |qe⊥| ∝ n
5/3
e ∝ B5/3. These asymptotic

trends are confirmed by Figs. 5 a) and b).
Finally, Figs. 5 c) and d) show the conductive/convective ratio of perpendicular and parallel fluxes,

respectively. The trend of Fig. 5 c) is a direct consequence of Eq. 7. The asymptotic final trend of Fig. 5 d)
depends significantly on the initial model parameters (more largely on the ion to electron mass ratio). How-
ever, an interesting behaviour has been found in the divergent side, close to ζ = 2; the conductive/convective
parallel flux ratio seems to be independent of the initial model parameters, and follows:

qe‖ ≈
7

2
Te‖neue. (15)

This relation has been found for mass ratios > 102, for both “hot” and “cold” ions, and could be applied
to close the fluid equation hierarchy downstream. It must be noticed that the validity of the present model
fails for very large ζ, since fully ion and electron magnetization is assumed.

B. Cases α0 6= 0

1. Parametric study of α0 and θ0

This subsection analyzes the results of the model described in section II when the upstream electron VDF
is formulated as a combination of two Maxwellian populations, with different temperatures. In contrast to
subsection A, here the ion population is fixed as a “cold” mono-energetic species. Therefore, this subsection
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investigates exclusively the effect of postulating a double Maxwellian distribution function at the upstream
source.

A parametric study of the two additional parameters α0 and θ0 has been performed for “cold” Xenon ions.
Fig. 6 shows the spatial solution with α0 = 0.03 and θ0 = 10, compared to the equivalent solution without
a suprathermal electron population. In the solution with suprathermal electrons, a quasineutral steepened
layer (QSL) is formed; both the plasma potential and the fluid velocity show a steep change in the divergent
region of the expansion. This change takes place where the suprathermal electrons start dominating the
expansion, as it is shown in Fig. 6 d), which represents the ratio between the suprathermal electron density
and the local plasma density, α = neh/ne. The gradient of the electric field, shown in Fig. 6 b), is a good
indicator of the exact location of the QSL.
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Figure 6. Spatial solution of the model with (dashed) and without (solid) suprathermal electrons (α0 = 0.03
and θ0 = 10.0). a) Plasma potential, b) Plasma potential gradient, c) Fluid velocity and d) α = neh/ne

The variation of the QSL location with α0 shows the same trends found by Ahedo22 in a three-species
convergent-divergent expansion; as α0 increases, the QSL moves towards the throat. However, in that case
the two electron species followed the Boltzmann relation, and therefore, both the ambipolar plasma potential
and the final ion velocity were unbounded. The present model obtains the final potential drop as part of the
solution, which is shown in Fig. 7 for different values of α0 and θ0. The final potential drop is normalized
with a mean electron temperature T e∗, defined in Section II, which is equal to Tec∗ for α0 = 0, and to Teh∗
for α0 = 1. The value of eφ∞/T e∗ must be the indistinguishable when α0 = 0 and when α0 = 1, and it
is confirmed by the solution. Moreover, Fig. 7 a) enables to identify the value of α0 for which the largest
electric potential drop is obtained for the same mean plasma pressure. This value has been found to be
α0M = 0.03; this is, 3% of the initial electron density belonging to the suprathermal population. Fig. 7 b)
shows the total potential drop normalized with the reference thermal electron temperature Tec∗. It must be
emphasized that the mean electron temperature T e∗ does not assess the propulsive quality of the magnetic
nozzle,22 since the power required to obtain the same T e∗ can be very different. In terms of performance,
if we compare all the cases according to the power deposited, including the heat fluxes, all them result in
conversion efficiencies very close to 100 %.

2. Behaviour of the two electron species

Once the solution of the model with suprathermal electrons has been analyzed, it is possible to compute
the contribution of each subpopulation to any macroscopic variable. Here, we will separate electrons in six
subpopulations: thermal free, thermal reflected, and thermal doubly-trapped, suprathermal free, suprather-
mal reflected, and suprathermal doubly-trapped. To analyze the effect of suprathermal electrons on the
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Figure 7. Parametric solution of the final potential drop eφ∞, for θ0 = 5 ( ), θ0 = 10 ( ) and θ0 = 15
( ).

dynamics of the expansion, Fig. 8 shows the contribution of each subpopulation to total density, parallel
pressure, and perpendicular pressure, for a solution without suprathermal electrons (left), and for one with
α0 = 0.03 (right).
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Figure 8. Contribution of the different electron subpopulations to density (a, b), parallel pressure (c, d) and
perpendicular pressure (e, f). Suprathermal electrons: free ( ), reflected ( ), doubly-trapped ( ).
Thermal electrons: free ( ), reflected ( ), doubly-trapped ( ). Left figures are for α = 0.0, while
right figures are for α = 0.03 and θ0 = 10.0.
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Regarding electron density, without suprathermal electrons, upstream the expansion is driven by the
reflected electrons while downstream in the divergent side, the doubly-trapped electrons dominate. This is
a direct consequence of assuming a quasi-neutral and current-free solution with large ion to electron mass
ratios, as it was shown by Mart́ınez Sánchez et al.12 When there is a small amount of suprathermal electrons,
the reflected thermal subpopulation governs the convergent expansion, while at the location of the QSL, the
dominant role is switched to the suprathermal doubly-trapped electrons. Specially interesting is the region
close to the QSL, where reflected and doubly-trapped, both thermal and suprathermal, have an important
contribution to the plasma density. As well, the free thermal electrons do not contribute at all to the electron
density, and therefore can be understood as a completely confined population. For larger values of α0, the
change from thermal reflected to suprathermal doubly-trapped electrons takes place sooner in the expansion.

Figs. 8 c) and d) show the contribution to the parallel pressure, which for a solution without suprathermal
electrons, is initially governed by the reflected population. In the divergent side, both the reflected and
doubly-trapped electrons dominate the expansion, and finally the free electrons contribute most to the parallel
pressure. When suprathermal electrons are present, only the reflected subpopulation from the thermal
electrons has a significant contribution to the total parallel pressure. As well, the reflected subpopulation of
suprathermal electrons can also contribute already to the initial pressure. Finally, Figs. 8 e) and f) show the
contribution to the perpendicular pressure. In this case, the free electrons (both thermal and suprathermal)
are negligible throughout all the expansion.
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Figure 9. Parallel (a, b, c) and perpendicular (d, e, f) temperatures of the thermal (left) and suprathermal
(center) electrons for α0 = 0.03 and θ0 = 10.0. Suprathermal electrons: free ( ), reflected ( ), doubly-
trapped ( ). Thermal electrons: free ( ), reflected ( ), doubly-trapped ( ). c) and f) parallel
and perpendicular main electron temperatures, respectively.

The contribution of the different subpopulations to both density and pressure are essential to analyze the
evolution of the parallel and perpendicular temperatures along the expansion. Fig. 9 shows the temperatures
of the thermal and suprathermal populations separately, for α0 = 0.03. The thermal population, which is
seen as a completely confined species, remains isothermal and isotropic along almost all the expansion. Only
when ζ > 3, the cooling starts to be noticeable. In contrast, the suprathermal population experiences an
electron cooling sooner in the expansion, and is also responsible for the anisotropy developed in the divergent
side. The total parallel and perpendicular temperatures experience an increase at the location of the QSL,
due to the pressure of the Suprathermal electrons, as it is shown in Fig. 9 c) and f).

To close the analysis of the suprathermal electrons, the fluid equations have been applied separately to
each species: ions, thermal and suprathermal electrons. Fig. 10 shows the contribution of the different
terms to the momentum and energy equations. Fig. 10 a) shows the sharp gain in kinetic energy during
the QSL, which is transferred from the parallel pressure gradient of the suprathermal electrons bias the
ambipolar electric potential. Again, the anisotropic volumetric force is only important in the convergent
side for ions, being almost negligible along all the expansion for electrons. Regarding the energy equation, a
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different behaviour has been found for the thermal and suprathermal electrons; upstream, the parallel heat
flow is the only dominant term in the thermal electrons energy equation, while the parallel temperature also
contributes significantly in the case of the suprathermal electrons energy balance. The situation is different
far downstream; the parallel heat flow of the thermal electrons is completely negligible, while it remains
significant for the suprathermal ones.
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Figure 10. Relative contribution of different terms to the momentum equation for a), b), c) and to the total
energy equation d), e) and f). Left plots are for ions, center for thermal electrons and right for suprathermal
electrons. Solution is for α0 = 0.03 and θ0 = 10.0.

IV. Conclusions

This paper presents a kinetic study of a paraxial, collisionless, fully-magnetized, convergent-divergent
plasma expansion. Quasi-neutral and current-free solutions have been explored, assuming a known distribu-
tion function at the upstream source for both ions and electrons.12 The electron VDF has been formulated
as a combination of two Maxwellian populations, with different temperatures upstream, while the ion VDF
is assumed mono-energetic or Maxwellian. With these assumptions, four dimensionless parameters drive
the expansion: the ion to electron mass ratio mi/me, the ion to electron source temperature ratio Ti∗/Tec∗,
the suprathermal to thermal source density ratio α0 = neh∗/nec∗ and the suprathermal to thermal source
temperature ratio θ0 = Teh∗/Tec∗. The results presented here correspond to Xenon ions.

The first part of this work analyzes the results for α0 = 0 from a kinetic and a fluid point of view. Two
solutions have been presented; for “cold” and “hot” ions, with Ti∗/Te∗ = 0.1, 10, respectively. It has been
showed that ions are strongly affected by magnetic mirroring, while electrons remain almost Maxwellian in
the convergent side of the expansion. The effect of the plasma potential drop in the convergent region is
weaker for “hot” ions, where the magnetic mirror effect dominates. The similarity of the problem with a
converging magnetic cusp has been enhanced.24 These results enable to define the plasma conditions at the
magnetic throat, valuable information for fully-divergent magnetic nozzle models.

The macroscopic analysis of the problem has enable to validate the kinetic solution, showing that mo-
mentum and total energy conservation are well satisfied throughout the expansion. Moreover, the evaluation
of the fluid equations has shown interesting balances of the different terms. For instance, the anisotropic
volumetric force has been found to play a secondary role in the electrons momentum equation, even far
downstream; while for ions, its contribution is very significant in the convergent side of the expansion. This
part of the work concludes with a study of the internal heat conduction, and its relation with the pressure
flux. An interesting behaviour has been found in the divergent side, which has allowed to propose a crude
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downstream closure to the fluid equation hierarchy.
Th second part of the paper presents the results for α0 6= 0. A quasineutral steepened layer (QSL) is

formed for small values of α0. Results are consistent with a previous model by Ahedo22 with two isothermal
electron populations. The value of α0 which gives the highest potential drop has been found to be α0M = 0.03,
for the same mean plasma pressure at the source. The thermodynamic behaviour of the two electron species
has been analyzed, finding that the thermal population is seen as a confined, isothermal and isotropic ambient
plasma throughout almost all the expansion. The anisotropy in the parallel and perpendicular temperatures,
as well as the effective electron cooling, are due to the suprathermal electron population thermodynamics,
and take place after the QSL.
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