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Numerous evidences exist today that the classical conductivity cannot explain the behav-

ior of Hall Thrusters. Numerical models have also shown that wall collisions are insufficient

to provide enough conductivity. On the other hand, with the help of an implicit particle

code, we have shown that the parameter range of interest, the plasma inside the thruster

is turbulent and that this turbulence is sufficient to reproduce its behavior. In this paper,

we present a linear study of the electron drift instability that we have identified in the im-

plicit model. We solve numerically the dispersion relation for various parameters. One of

the conclusions is that the wave vector of the instability is essentially perpendicular to the

magnetic field. We will pay attention to the drift modes. We have developed an explicit 2D

PIC code to study the nonlilear behavior of the preceding instability. This model confirms

the linear growth rate computed theoretically and also shows without ambiguity that the

developement of electrostatic perturbations is associated with the flow of current even in

the presence of a single mode. In single mode case, we have built a simple theoretical

model similar to the one used for heating of Tokamaks by electromagnetic waves. This

model shows that at sufficiently large amplitude of the electrosatic field, stochasticity is

induced in the gyromotion of the electrons.
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I. Introduction

The experiments on the SPT-100ML thruster (Stationary Plasma Thruster), the numerical simulations1,2−7

and more recently the works on the lower power cylindrical Hall Thruster8 show that the contribution of
the classical electron-atom collisions to cross-field transport is insignificant. On the other hand, plasma
turbulence9−11 seems more and more involved in the process of anomalous transport even though the way it
occurs still remains unknown. Thus, J.C. Adam and A. Heron have developed a fully kinetic two-dimensional
model of the Hall thruster in order to study the stability of the plasma in the direction of rotation due to
the E×B drift 1. They have demonstrated that the large drift velocity that inherently exists at the exhaust
of the thruster can be responsible for an instability that gives rise to plasma turbulence. This instability is
a high frequency one with very short wave length. The study of this kinetic instability has a real interest in-
sofar as a wave with high wavenumber is more efficient in term of diffusion. This present paper is devoted to
the derivation and to the study of the dispersion relation of electrostatic waves in a hot magnetized electron
beam drifting across a magnetic field with non magnetized cold ions. We demonstrate that the simplified
description of the plasma configuration of Hall Thrusters, i.e. the uniform cross-field configuration only, is
enough to generate unstable waves of frequencies ω as Ωci � ω � Ωce, where Ωci, Ωce are respectively the
ion and electron gyro frequencies with high wave numbers. This leads to an instability connected to the
resonance between kVd, where k is the wave number and Vd the drift velocity, and the cyclotron harmonics
nΩce where n is an integer. The properties found thanks to this study will be used to build a theoretical
model descibing the interaction of the instability with the electrons in the thruster. We will see that this
model provide a better understanding of the origin of the anomalous transport. The plan of this work is
as follows: Section II is devoted to the linear study of the electron drift instability. The dispersion relation
is established, focusing on the drift modes. We pay attention on the influence of the temperature and of
the density gradient on the instability. In the Section III,we will exposed the theoretical model for electron
transport and its results. To conclued, section ??, we will show several results from the PIC simulations
which highlight the strong correlation between the evolution of the electrostatic energy and the mean velocity
across the magnetic field.

II. Linear study of the electron drift instability

A. Derivation of the dispersion relation

x

E
dB

z

y xX
V

Figure 1. Schema of the geometry used for the calculation.

2
The 29th International Electric Propulsion Conference, Princeton University,

October 31 – November 4, 2005



The plasma configuration we consider here is the Hall Thruster one. As shown in Fig.1, a magnetic field is
applicated to the plasma in the radial direction which will be the z direction and an electric field is created in
the x longitudinal direction. This cross-field configuration drives an electron current with velocity Vd in the
azimuthal direction which stands for y in all the following. We assume that the ions are not affected by the
electric and magnetic fields on the time scale we look at. It leads to ignore the ion drift in our equilibrium,
retaining only that of the electrons. It can be done insofar as we only consider the case γ � Ωci where γ is a
typical growth rate for the instabilities to be discussed. Several studies12−14 of unstable waves have already
been performed in such plasma configurations, but they usually take into account a magnetic field gradient
or a density gradient. Here, we neglect them both assuming that the stationary electric field drift velocity
Vd is much larger than the magnetic field gradient drift velocity and than the density gradient drift velocity.
This assumption restricts the following stability analysis to wavelengths far below the magnetic field and
density gradient lengths. However, we will see that the wavelengths of the unstable modes are close to the
Larmor radius or even smaller. So we can argue that the magnetic field gradient is insignificant indeed.
As for the density gradient, a brief study of his influence will be done further. Thus, for the unperturbed
plasma, we have :

~E = E0 ~ex (1)

~B = B0 ~ez (2)

n(x, y, z) = n0 ; ~Vd = −E0

B0

~ey (3)

We study the behavior of a pure electrostatic perturbation. The perturbed potential is written: Φ =
Φ0 exp[i(kxx + kyy + kzz − ωt)] where kx, ky, kz are the components of the wave number vector. The ions
are considered as cold so we describe them in a simple way by a cold fluid. Then, the equations of the
hydrodynamic we take for the ions are:

M( ∂
∂t + ~vi.~∇).~vi = −e ~∇Φ (4)

∂ni

∂t + ~∇.ni~vi = 0, (5)

where ni and vi are the ion density and velocity, e is the ion charge and M is the ion mass.
Linearizing and resolving the system in order to find the perturbed density of ion, we obtain:

n1
i =

n0eΦk2

Mω2
(6)

where k2 = k2
x + k2

y + k2
z .

The electrons at the equilibrium are described by a classical Maxwellian distribution function with a
temperature T , shifted by the velocity Vd in the direction y:

f0 = n0

( m

2πT

)

exp
[

− v2 − V 2
d

2v2
th

]

(7)

where vth =
√

T
m is the thermal velocity, m is the electron mass.

Taking into account the perturbation, the electron distribution function fe satisfies the Vlasov equation:

∂fe

∂t
+ ~ve.

∂fe

∂~r
− e

m

[

− ~∇Φ + ~ve × ~B
]

.
∂fe

∂ ~ve
= 0 (8)

where ve is the electron velocity vector.
We linearize the function fe and integrate the Vlasov equation resulting along the unperturbed orbits in

the well known way 15. We find the perturbed density of electrons:
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n1
e =

e

m

n0Φ

v2
th

{

1 + ξ
{

Z(ξ)I0(b)e
−b +

n=∞
∑

n=1

In(b)e−b(Z(ξ +
nΩ

kzvth

√
2
) + Z(ξ −

nΩ

kzvth

√
2
))

}}

(9)

where ξ =
ω−kyVd

kzvth

√
2

and b =
k2

⊥
v2

th

Ω2 with k2
⊥ = k2

x +k2
y. The functions In are modified Bessel functions of order

n. Z is the plasma dispersion function of Fried & Conte 14: Z(η) = 1√
π

∫ ∞
−∞

e−t2

t−η dt

The set of equations (6) and (9), and the Poisson’s equation determine the dispersion relation:

k2λ2
D

(

1− m

M

ω2
pe

ω2

)

+ 1 + ξ
{

Z(ξ)I0(b)e
−b +

n=∞
∑

n=1

In(b)e−b(Z(ξ +
nΩ

kzvth

√
2
) + Z(ξ − nΩ

kzvth

√
2
))

}

= 0 (10)

where λ2
D = T

mω2
pe

is the Debye length, ωpe being the electron plasma frequency.

The full study of the three dimensional dispersion relation (10) to be published15 conlued that the wave
vector of the instability is essentially perpendicular to the magnetic field. In the next part, we will pay
attention to the drift modes only. We will also go back over the assumption of homogeneous density by
introducing a gradient in the longitudinal direction x.

B. Drift modes equation, kx = kz = 0

We obtain the drift modes by assuming kx = kz = 0. The Z function yields:
Z(η) ≈ −η−1(1 + 1

2η2 )
And the dispersion relation becomes:

k2
yλ2

D

(

1 − m

M

ω2
pe

ω2

)

+
[

1 − I0(b)e
−b +

n=∞
∑

n=1

2(ω − kyvd)
2In(b)e−b

(nΩ)2 − (ω − kyvd)2

]

= 0 (11)

with b =
k2

yv2

th

Ω2

We introduce the density gradient by linearizing the density profile about the density of reference n0.
The density is written now as n = n0(1 + x/Ln) where Ln is the gradient length defined by 1

Ln
= 1

n0

dn
dx . It

yields the dispersion relation:

k2
yλ2

D

(

1 −
ω2

pi

ω2
(1 +

x

Ln
)
)

=

(

1+
x

Ln

){

I0(b)e
−b−1+

n=∞
∑

n=1

2(ω − kyvd)
2In(b)e−b

(ω − kyvd)2 − (nΩ)2

}

+
kyv2

th

ΩLn

{

n=∞
∑

n=1

In(b)e−b 2(ω − kyVd)

(ω − kyVd)2 − (nΩ)2
+

I0(b)e
−b

ω − kyVd

}

(12)
where ωpi0, ωpe0 are the ion and electron plasma frequencies at the origin (x = 0, n = n0).

Considering a cold plasma, b � 1, it reduces to:

(

1 −
ω2

pi0

ω2

)

= ω2
pe0

( 1

(ω − kyVd)2 − Ω2
+

1

ΩkyLn(ω − kyVd)

)

(13)

We solve the equation and we obtain waves almost purely growing with a rate given by:

ωi = ωpi0(1 − β)

√

(kVd)2 − Ω2

ω2
UH − (kVd)2

(14)
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with β =
ω2

pe0
((kyVd)2−Ω2)

2ΩkyLnkyVd((kyVd)2−ω2

UH
)

The roots are unstable for Ω < kVd < ωUH where ω2
UH = ω2

pe0 + Ω2 is the upper hybrid resonant
frequency. For b � 1, the value of the growth rate depends on Ln but the existence of the unstable modes
do not. So we find the result already determined for the Hall thrusters in the homogeneous case in REF.[1]:
for Vd/vth < 1, no more unstable roots are found with b � 1. Back to the more general case of a hot plasma,
we notice that the introduction of the gradient density in the calculation of the dispersion relation brings a
new term in relation to the Eq. (11) with the coefficient proportional to: 1

kyLnΩ = 1
kyVd

Vd

vth

rL

Ln
where rL is the

Larmor radius. In plasmas of interest for Hall thrusters, the drift velocity is close to the thermal velocity
and the parameter kyVd is high compare to the unit. So, the gradient length has to be largely smaller than
the Larmor radius so that the additional term in Eq. (12) would be significant. Thus, the density gradient
will probably not change the results until it reaches a value largely higher than the ones existing in the Hall
thrusters.These results are displayed on the next figures which show numerical solutions of the dispersion
relations established in this part.

C. Numerical results

In the temporal theory of instability, the perturbations are expanded into instability waves exp[−i(ωt−~k.~r)],
the wave numbers k are real, and the complex frequency ω = ωr + iωi must be a solution respectively to
Eq.(11), (12). The unstable modes correspond to positive growth rates ωi. For the sake of simplicity,
dimensionless variables will be used in the following. The quantities ω, Ω and k will denote ω/ωpe, Ω/ωpe

and kVd/ωpe, respectively. The thermal velocity will normalise the drift velocity. The dispersion relation
has been solved using these new parameters. We assume the cyclotron frequency as Ω/ωpe = 0.1. In the
framework of Hall thruster, it amounts to a magnetic field of 170 G for a density of 2.8 1011 particles per
cm3. Taking the drift velocity equal to Vd = 2 106m.s−1, these paramaters correspond to the values mesured
in the simulations 1 at the location where the instability developped, in the case of a discharge voltage of
300V. The following results have been calculated for the mass ratio of xenon m/M = 4.2 10−6 which is the
propellant used most of the time in Hall thruster.

1. Unstable modes

We have solved Eq.(11) numerically to find the dependence of ωr and ωi on wave number ky. Figure 2 shows
the frequency of the unstable modes and the corresponding growth rate as a function of the wave number
in the azimuthal direction ky for a fixed ratio Vth/Vd = 0.5. We can see the transitions from stability to
instability whenever kyVd is close to a cyclotron harmonic nΩ. The growth rate reaches a maximum and
then decreases sharply between each cyclotron harmonic. Each growth rate peaks are separated by stable
regions. The real part of the solutions is plotted in logarythmic units in Fig.2 so that one could see that
the frequency is several orders of magnitude below the growth rate except in the vicinity of the growth rate
peak. Figure 2(a) is a zoom on the small wave number of the figure 2(b).

Figure 2(b) represents the envelop of the frequency and of the growth rate as a function of kyVd from
small to very large wave numbers. The values of ωr correspond to frequencies ranging from 1MHz to
50MHz which agrees with the range of frequencies observed in the PIC simulations 1. These frequencies
are associated with very large values of growth rate which corresponds to growth times ranging from 0.1µs
down to 0.01µs. The envelop has a maximum value for kyVd/ωpe around 1.2. Thus, maximum of the growth
rate is reached for wave length close to the tenth of a millimetre. The unstable modes spread over a very
great range of wave number. For a wave number approaching 4.104m−1(kyVd/ωpe = 10), the growth rate is
still significant as his value is the quarter of the one of the growth rate peak.

5
The 29th International Electric Propulsion Conference, Princeton University,

October 31 – November 4, 2005



0.1 0.2 0.3 0.4 0.5 0.6

10−4

10−3

10−2

k
y
V

d
/ω

pe

ω
r/ω

pe

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3
x 10−3

k
y
V

d
/ω

pe

ω
i/ω

pe

(a)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
x 10−3

k
y
V

d
/ω

pe

ω
r/ω

pe

0 2 4 6 8 10 12
0

1

2

3

4

5 x 10−3

k
y
V

d
/ω

pe

ω
i/ω

pe

(b)

Figure 2. Numerical solutions of the one dimensional dispersion relation. (a) represents the real part and the
imaginary part as a function of kyVd. (b) is the corresponding envelop from small to very large wave numbers.
The cyclotron frequency is equal to 0.1 in dimensionless value.

2. Evolution of the unstable modes as a function of thermal velocity

In order to discuss our choice of thermal velocity in the resolution of the dispersion relation Eq.(11), the
growth rate ωi is shown in Fig.3 as a function of Vth/Vd and of kyVd. The unstable modes still exists for
high temperature as great value of the growth rate can be observed, even for values of Vth/Vd as large as 2.
Nevertheless, the width of the stable regions increases with the increase of the thermal velocity and is very
close to Ω for large values of Vth/Vd. The unstable modes tends to desappear for Vth/Vd > 3 which is not
represented on the figure. Note that there are no more unstable roots for kyVd > ωUH (ωUH/ωpe = 1.005)
for very small temperature as it was found in section B. We also showed in that section that in the case
b � 1, i.e, for very small thermal velocity, the unstable waves are almost purely imaginary. The frequency
is several order of magnitude below the growth rate. In plasmas of interest of Hall thrusters, the thermal
velocity is of the same order of magnitude as the drift velocity. So we can assume the thermal velocity as
equal to half the drift velocity for all the following, so that the resolution of the dispersion relation would
be simplified insofar the unstable modes are thick. It corresponds to temperature equal to T = 5.7eV . It is
obvious that this is an arbitrary choice. However, the figure 3 shows that the main structure do not depend
on the thermal velocity except for values we do not take account of.
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Figure 3. Frequency and growth rate as a function of Vth/Vd and of kyVd.

3. Influence of the density gradient

The analytic results of Sec.B tends to show that the gradient length must be very small to affect the property
of the instability. In order to go further in the investigation of the effects of gradient density, Eq.(12) has
been solved numerically. The results are summarized by Fig.4 which shows the growth rates as a function
of kyVd for three characteristic lengths of density gradient as defined in Sec.B. The lobes corresponding to
typical gradient density in the thruster (Ln ≈ −1cm) superimpose perfectly on the ones obtained without
any gradient (solid line on the figure 4). The lobes in dashed line are the solution of the Eq.(12) for a
strong gradient (Ln = −0.05cm). One can notice that the values of the growth rate are similar despite a
weak decrease of the peaks. Nevertheless, the lobes are thicker than they are without any density gradient.
It was predicted by the brief study on the dispersion relation (12): the additional term brought by the
density gradient is significant only if the gradient length is much higher than the Larmor radius. In the Hall
thrusters, the characteristic gradient length should be much smaller than 1mm so that the density gradient
would affect the instability. This value is above the ones existing in the thruster, so we can consider that
the instability is robust in relation to the gradient density.
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d
/ω

pe
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Figure 4. Effect of the gradient density.Solid line represents both the numerical solutions of 10 and 12 for
Ln = −1cm. Dashed line is the growth rate for Ln = −0.05cm

The next section is devoted to a theoretical model for electron transport. It is based on the interaction
between the instability studied above and the electrons in the configuration of electric and magnetic crossed
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fields.

III. Electron transport

The problem of electron transport comes down to find a mechanism able to induce anomalous transport
from an instability with a frequency very low what rules out a quasi linear diffusion.

A. Theoretical model

We consider the crossed field configuration of the thruster with the azimuthal instability introduced here as
a monochromatic wave:

~B = B0 ~ez (15)

~Estat = Estat ~ex = −B0Vd ~ex; Vd < 0 (16)

~E = E0 cos(kyy − ωt) ~ey (17)

~E represents the azimuthal drift instability determined by the study of the relation dispersion above.
Its pulsation ranges from 1MHz to 50MHz and its wave number verifies −kyVd ≈ nΩce with n integer.
We consider the electron-wave interaction on a time scale as the electron acts as though in a zero magnetic
field16. So it requires ω � Ωce which is not the case in the thruster. This assumption is possible insofar we
introduce the Doppler shift induced by the drift motion of the electron. In the referential of the electron,
drifting with the velocity ~Vd, the electron motion comes down to a uniform cyclotron gyration perturbed
by a fluctuating electric field. Setting η = y − Vdt − Y where Y is the position of the guiding center of the
electron (dY

dt = 0), the fluctuating electric field is written:

~E = E0 cos(kyη − (ω − kyVd)t) ~ey (18)

Then, for n � 1, we have −kyVd � Ωce and the wave frequency verifies: ω − kyVd � Ωce The motion
occurs in the plan (x, η) and the azimuthal component ~ey of the motion equation is written:

η̈ + Ω2η = E0 cos(kyη − (ω − kyVd)t) (19)

The electron and the wave exchange most energy while in the resonance16, i.e. when the η component of
the electron velocity is close to the phase velocity of the wave:

VΦ =
ω − kyVd

ky
≈ −Vd = η̇ (20)

where VΦ is the phase velocity of the wave. The approximation VΦ ≈ Vd can be written as kyVd � ω. It is
obvious that the electron has to have enough energy so that its velocity component η̇ could reach the phase
velocity. Thus, we can say that the interaction electron-wave is efficient only if V⊥ ≥ −Vd. In order to be
exhaustive, we have to take into account the modulation due to the potential of the wave. This modulation
corresponds to the nonlinear effect of trapping. This arises here because over a small part of an electron
cyclotron orbit the effect of the magnetic field may be ignored. Then the condition on V⊥ so that the electron
could be in resonance with the wave becomes:

V⊥ ≥ −Vd − ∆v; ∆v =

√

2eE0

kym
(21)

where ∆v is the trapping width.
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Figure 5. Schematic of electron orbit in the phase space (η, η̇) for V⊥ ≥ −vd − ∆v

Fig.5 shows the electron trajectory during a cyclotron gyration in the phase space when the condition
(21) is verified. The main contribution of the wave to the motion takes place when the resonances occur.
Such events (“kicks”), i.e when the condition (20) is verified, take place twice during a cyclotron period.

Except for the resonance, the electron trajectory remains close to a drifting cyclotron orbit. The two kicks
received by the electron when passing through wave-particule resonance can be considered as wave-particle
virtual collisions. According to the values of the amplitude of the wave E0 and of the parameter kyVd, the
electron orbit will be linearly perturbed or stochastic. The stochastic threshold is given by the following
expression16:

E0

Estat
>

( E0

Estat

)

threshold
≈ 1

4

( Ωce

kyVd

)1/3

(22)

For a fixed value of the parameter kyVd, i.e. for a given unstable mode, Eq.(22) gives the minimum
ratio of the amplitude of the wave to the amplitude of the static field so that the electron trajectory would
be stochastic. Below this threshold, the trajectory is slightly perturbed and oscillates around the drifting
cyclotron orbit. Beyond this one, the electron trajectory becomes stochastic. For a population of electrons,
it yields to a stochastic anisotropic diffusion in the phase space due to the asymmetry introduced by the
electric static field. The next section is devoted to the numerical results associated to this theoretical model.

B. Results for unstable modes as −kyVd � Ωce

The kinetic instability described above develops as −kyVd ≈ nΩce. Therefore, it is obvious that the effect of
each unstable mode cannot be studied with this theoretical model since it is available only for −kyVd � Ωce.
In particular, the first harmonic modes n = 1, 2, 3... are too close to the cyclotron frequency so that one
could dissociate the wave-particle interaction from the cyclotron motion. In such case one cannot consider
any more that the wave-electron resonance, each time the condition (20) is true, occurs over a time short
compared with the cyclotron period. So one cannot treated the interaction by assuming that the magnetic
field is zero. Thus, the following results only concern the cases well descibed by the theory, e.g as n � 1.
For the next figures, the values of the parameters are the same than in the section II: Ωce = 3GHz,
ωpe = 30GHz and Vd = 2 106m.s−1. The unstable mode is chosen to verify the conditions n � 1 and
E0/Estat > (E0/Estat)threshold: E0/Estat = 0.5 and kyVd/ωpe = 1.017(mode n = 10)

Fig.(6) shows clearly the scattering of the distribution function. The diffusion of the population of
electrons occurs approximatively for V⊥ higher than V⊥ = 1.2 106m.s−1 which is in a good agreement with
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Figure 6. Electron distribution function versus V⊥ at the origin (left) and after 100 cyclotron gyra-
tions(right).The initial distribution is maxwellian with T = 5.7 eV

the condition (21) since with such parameters, ∆v = 0.89 106m.s−1. The center of the distribution function
remains unchanged as the electrons of low energy have a velocity not sufficient to reach the phase velocity
of the wave (even when the trapping width is taken into account). For such electrons, there is no resonance
and their interaction with the wave averaged on a cyclotron gyration is insignificant. The stochasticity of
the electrons trajectories is clarified on the figure (7).
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6
x 10

6 Poincaré section on 100 cyclotron orbits 

(ω−k
y
V

d
)t  on [0 2π]

V
⊥
(m

.s
−1

)

Figure 7. Poincaré Section. Each time the Larmor phase of the electron is equal to π, V⊥ and time are
mesured. It occurs one time per gyration and correponds to one dot. 50 electrons distributed homogeneously
on V⊥ ∈ [0, 4.106] are followed for 100 cyclotronic gyrations.

It represents the evolution of V⊥ of 50 electrons as a function of (ω − kyVd)t, which is approximatively
proportionnal to the time, modulo 2π . The initial velocity of the electrons is distributed homogenously on
V⊥ ∈ [0; 4.106]. The electrons trajectories are stochastic for V⊥ ≥ −vd −∆v. Below this value (V⊥ ≈ 1 106)
the trajectories are slightly perturbed: lines are formed by the successive dots. Above this value, the
trajectories are not obvious any more, they are stochastic.

In Fig.(8) we have given the average on the distribution function of the electron velocity in the axial
direction x as a function of time. It shows the existence of electron transport along the channel to the
exhaust of the thruster with a rate close to the one we expect when one talk about anomalous transport.
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Figure 8. Average of the electron velocity on the distribution function in the axial direction x.

IV. Pic Simulations of the instability

Using a quasilinear formalism it is possible to compute an estimate of the transport across the magnetic
field in the direction perpendicular to the drift velocity as in [1]. One obtains:

V x ≈
√

(π/2)(m/T )(E0/B)2
Vd

(2
√

(b))
(23)

with b = (kyrl)
2, rl is the Larmor radius

This crude estimate assumes that the distribution function is Maxwellian and that a stationary state has
been reached. These assumptions have obviously no serious physical basis and have been made only to obtain
an explicit expression of the average velocity. This expression shows that the average drift velocity across
the magnetic field should be proportional to the square of the fluctuating field and also to the drift velocity.
A series of 1D PIC simulations with geometry similar to the theoretical model (B constant perpendicular
to the direction of simulation, E static parallel to the x direction yielding a drift velocity parallel to the
direction of simulation) have been performed in order to check these dependencies. Preliminary results are
shown in Fig.(9)

Figure 9. Correlation between the time evolution of the electrostatic energy and of the average velocity in
the axial direction x. The electric unit is e/(mcωpe) and vx is vx/c where c is the speed of light.

These simulations confirm the theoretical growth rate within 10% and also show the diffusion in velocity
space around the drift velocity in agreement with the theory of section III. A strong correlation of the
evolution of the electrostatic energy and the mean velocity across the magnetic field is visible in the Fig.(9).
However due to the time evolution of the distribution function one can not expect to observe the exact
proportionality predicted by the theory.
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V. Conclusions

As a conclusion, we can say that the plasma configuration involving crossed electric and magnetic fields
generate a high frequency drift instability based on the resonance between kyVd and the cyclotron harmonics
nΩ in frequency range Ωci � ω � Ωce. It occurs for very short wavelength close or even below the electron
gyroradius. The dispersion relation for these waves has been derived and numerically solved. We particularly
paid attention on the drift modes whose robustness in relation to the temperature and the density gradient
has been shown. The properties of the instability have been used to build a theoretical model. It describes
well the wave-particle interaction for the very high wave numbers (−kyVd � Ωce). For a sufficiently large
amplitude of the wave, one can compared the wave-particle interaction to virtual collisions what generate a
non isotrope diffusion in the axial direction due to the electric field. These theoretical results are in a good
agreement with the results obtained by the PIC simulations. The strong correlation of the evolution of the
electrostatic energy associated with the wave and the electronic transport is obvious. Work is underway to
provide a better understanding of the saturation of the instability. The growth of the axial conductivity
induced by the instability acts probably on the instability itself. The study of a self-consistent model belongs
to the perspective to the presents works.
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