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For krypton to become a realistic option for Hall thruster operation it is necessary to 
understand the performance gap between xenon and krypton and what can be done to 
reduce it. A floating emissive probe is used with the Plasmadynamics and Electric 
Propulsion Laboratory’s High-speed Axial Reciprocating Probe system to map the internal 
plasma potential structure of the NASA-173Mv1 Hall thruster using xenon and krypton 
propellant. Measurements are taken for both propellants at discharge voltages of 500 and 
600 V and discharge currents of 9.27 and 9.59 A, respectively. Electron temperature and 
electric field are also calculated and reported. The acceleration zone and equipotential lines 
are found to be strongly linked to the magnetic field lines. The plasma lens effect of the 
NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the 
discharge channel whereas the krypton ions are defocused. Krypton is also found to have a 
longer acceleration zone than the xenon cases. These results explain the large beam 
divergence observed with krypton operation. Krypton and xenon have similar maximum 
electron temperatures and similar lengths of the high electron temperature zone, although 
the high electron temperature zone is located farther downstream in the krypton case.  

I. Introduction 
all thrusters1,2 are space propulsion devices that use crossed electric and magnetic fields to ionize and 
accelerate propellant atoms to high exhaust velocities. The electric field is established by an electron current 

that crosses and is concurrently impeded by the magnetic field. The magnetic field causes the electrons to follow a 
closed drift path and for this reason Hall thrusters are often referred to as closed drift thrusters. Noble gases of high 
atomic weight, such as xenon and krypton, are the most common choice of propellant.  

H 
Due to the relative high price and scarcity of xenon and the superior specific impulse of krypton, krypton has 

recently sparked interest in the electric propulsion community. Even for small scale missions, the financial savings 
in propellant cost alone can be tens of thousands of dollars given krypton’s high specific impulse and low price. 
Although previous studies3-7 report krypton to have an inferior performance as compared to xenon, recent results 
using the NASA-457M8 and the NASA-400M9 indicate that krypton can be operated at efficiencies comparable to 
xenon. Before krypton can become a legitimate option for space propulsion, the reasons for the krypton efficiency 
gap must be fully understood and the efficiency gap must be reduced. 
 Previous researchers4,5,9 have consistently concluded that the dominant contributing factor to krypton’s inferior 
efficiency is propellant utilization. It has recently been shown that beam divergence is also a significant contributor 

 
The 29th International Electric Propulsion Conference, Princeton University,  

October 31 – November 4, 2005 
 
 

1

                                                           
* Ph.D. Candidate, Aerospace Engineering, jlinnell@umich.edu. 
† Professor and Laboratory Director, Aerospace Engineering, alec.gallimore@umich.edu. 



to krypton-xenon efficiency gap.10 To obtain a greater understanding of the krypton-xenon efficiency gap, it will be 
necessary to collect information about the plasma behavior internal to the Hall thruster discharge channel. 
 Internal floating emissive probe measurements have been conducted for the NASA-173Mv1 operating with 
xenon and krypton and are reported in the following paper. The floating emissive probe is mounted on the 
Plasmadynamics and Electric Propulsion Laboratory (PEPL) High-Speed Axial Reciprocating Probe (HARP) 
system and the emissive probe is sweep into the thruster discharge channel. This provides an internal mapping of the 
plasma potential structure. Similar methods of characterizing the internal potential structure of Hall thrusters has 
been used by other researchers.11-17 In addition to the plasma potential, the electron temperature and electric field are 
also extracted from the data. For both krypton and xenon, the Hall thruster is operated at discharge voltage of 500 
and 600 V with a corresponding discharge current of 9.27 and 9.59 A, respectively. High-voltage operation is 
chosen because krypton Hall thrusters would most likely be designed for high-voltage operation in order to benefit 
from on krypton’s superior specific impulse. 

II. Experimental Setup and Apparatus 

A. Facility 
The measurements reported in this paper were conducted in the Large Vacuum Test Facility (LVTF) at PEPL. 

The LVTF is a cylindrical stainless-steel tank that is 9 m long and 6 m in diameter. The vacuum chamber is 
evacuated using seven CVI model TM-1200 internal cryopumps, which combined are capable of pumping 240,000 
l/s of xenon and 252,000 l/s of krypton. The vacuum tank pressure is monitored by using two hot-cathode ionization 
gauges. The vacuum chamber operates at a base pressure of 1.5×10-7 Torr and approximately 3.3×10-6 Torr 
(corrected18) during all thruster operating points.  

High-purity research grade xenon and krypton are used as propellants for the following measurements. The 
purity level of xenon and krypton are 99.9995% and 99.999%, respectively. The propellants are supplied through 
propellant feel lines using 20 and 200 sccm mass flow controllers for the cathode and anode, respectively. The mass 
flow controllers are calibrated using a constant volume method. The compressibility correction factor is calculated 
using the van der Waals Equation19 and the Virial Equation.20 Error in the mass flow controllers is approximately 
±1% of full scale. 

B. Experimental Setup 
As shown in Fig. 1, the NASA-173Mv1 is mounted on two linear (radial and axial) tables that control the probe 

alignment and positioning. The emissive probe is mounted on the HARP system, which is securely fixed 
downstream of the thruster to dampen any vibrations caused by the high acceleration of the probe. These individual 
components are discussed in greater detail below. 
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Figure 1. Internal Floating Emissive Probe Experimental Setup 



C. Thruster 
The NASA-173Mv1 Hall thruster21 (Fig. 2) is used for all 

measurements. In addition to the standard inner and outer magnetic coils, 
the NASA-173Mv1 uses a trim coil to shape the magnetic field topology. 
The thruster is run for one hour for the initial conditioning and is warmed 
up for at least 30 minutes at a given operation point before data are taken.  

The magnetic field created by the trim coil is found to improve 
thruster efficiency by establishing what is commonly referred to as a 
plasma lens.1,21-25 A plasma lens uses magnetic field lines with a 
curvature that focus ions toward the center of the discharge channel.17 
This can be explained because to first order the magnetic field lines chart 
the equipotential lines inside a Hall thruster.26 In addition to improved 
beam focusing, this magnetic field topology has also been shown to 
improve ion acceleration processes and internal electron dynamics.10,21  

A Busek BHC-50-3UM hallow cathode is used for all measurements. 
The cathode flow rate is equal to 10% of the anode flow rate. The 
cathode axial centerline is mounted 30 degrees off horizontal and the 
center of the cathode orifice is placed 30 mm downstream and 30 mm 
above the thruster outer face.  

Figure 2. NASA-173Mv1 Hall 

D. High-Speed Axial Reciprocating Probe 
The HARP27,28 (Fig. 3) has a linear motor assembly 

providing direct linear motion at very high speed and large 
acceleration. The linear motor is an LM210 manufactured by 
Trilogy that has a three-phase brushless DC servomotor 
consisting of a linear, “U”-shaped magnetic track and a “T”-
shaped coil moving on a set of linear tracks. A linear encoder 
provides positioning resolution to 5 microns. The table is 
covered by a stainless steel and graphite shroud to protect the 
HARP from excessive heating and high-energy ions. One 
side has a thin slit running the length of the table through 
which a probe boom extends. The HARP is capable of 
moving small probes at speeds of 250 cm/s with linear 
accelerations of 7 g’s. For this experiment, the probe is swept 
at 150 cm/s and residence time inside the discharge channel 
is kept under 80 ms. 

 

E. Emissive Probe 
1. Probe Description 

The emissive probe design is based on the work 
done by Haas at PEPL.11 The emissive probe is 
composed of 1.5-mm-diameter double bore alumina 
insulator. The emitting filament is 1% thoriated 
tungsten with a diameter of 0.0127 cm. The electrical 
connection along the length of the probe is completed 
using 30 AWG copper leads that are slightly recessed 
into the alumina shaft. Additional short lengths of 
thoriated tungsten wire are inserted into the alumina 
tubing to provide a tight fit and guarantee good 
contact between the emitter and copper wires. A 
schematic of the emissive probe design appears in Fig. 
4. 

The diameter of the emitting filament (0.0127 cm) 
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is much smaller than the electron gyroradius inside the Hall thruster. This condition is necessary for unmagnetized 
probe theory to be valid.29 The filament size used in these measurements is of the same emitter diameter used by 
Haas11 and similar to the emitter diameter used by Raitses et al.13-16,30,31  

The area mapped by the emissive probes is displayed in Fig. 5. The origin is taken to be the location where the 
inner wall meets the anode. Five axial sweeps spaced 5 mm apart are taken inside the Hall thruster discharge 
channel. The probe is aligned so that the filament tip travels from 137 mm to within 10 mm of the anode. However, 
in order to accentuate the areas of interest, the results section only shows the emissive probe findings in the region 
from 0 to 100 mm. The emissive probe is positioned so that the plane of the filament loop is normal to the thruster 
radial direction. The expected resolution of the emissive probe is 1.5 mm, which is the approximate size of the 
filament loop. 
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Figure 7. Emissive Probe Sweep Example 

 
2. Space Charge Limited Sheath Correction 

Space charge effects must be taken into account when analyzing emissive probe data in Hall thrusters. The space 
charge limit is reached when the emitted electron current to collected electron current ratio (δ) reaches a critical ratio 
(δc) that is approximately equal to one. Hobbs and Wesson33 present an equation for critical emission: δc=1-8.3(me/ 
Mi)1/2. In this equation, of electron mass is given by me and ion mass is given by Mi. As δ approaches δc, the electric 
field at the probe surface decreases and tends toward zero. Once δ becomes greater than δc, a potential well forms 
and emitted electrons are returned to the probe, creating a double sheath. 

The space charge limited sheath surrounding the emissive probe appears in Fig. 8. For the following discussion, 
the probe sheath is separated into 2 sections: The collector sheath and presheath. Three lines representing possible 
collector sheaths appear in Fig. 8: i) δ< δc, insufficiency electron emission; ii) δ=δc≈1, space charge limited regime; 
and iii) δ>>1, very strong electron emission.34 Due to the extremely frailty of the emissive probe inside the harsh 
Hall thruster discharge channel environment, the heater current is increased slowly until adequate filament heating is 
reached. Adequate heating is reached when the plasma potential profile no longer changes with increased electron 
emission. This heating method ensures that the probe is operating in the space charge limited regime (regime ii). 
Regime iii shown in Fig. 7 is an extreme case that will not occur before probe failure. 
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As a result of this space charge limited sheath, there is insufficient emitted electron current and the probe floats 
below the true plasma potential. The following correction17 is applied to account for the space charge limited sheath. 

The measured plasma potential is augmented by adding the collector sheath potential drop (0.6 Te).33,35 This will 
give the instantaneous plasma potential local to the emissive probe while avoiding added complication from trying 
to correct for the large presheath. The collector sheath size (~O(λD)) internal to the Hall thruster is on the same order 
as the wire diameter, which is an order of magnitude smaller than the total emitting tip dimensions and therefore the 
desired resolution of approximately 1.5 mm is maintained. Because of the presheath size is on the same order as the 
discharge channel width (Wch),36 it is difficult to account for the presheath potential drop while maintaining a 
meaningful special resolution. The potential drop (0.9 Te)35 across the presheath is considered a perturbation to the 
plasma and is used to define error bars for the measurement. In addition to the presheath perturbation, one half of the 
potential drop across the floating heater power supply should also be included in the error. The heater filament 
potential drop is 4 V. The total error associated with the plasma potential measurements is equal to ±0.9 Te-2V. 
3. Electron Temperature and Electric Field Calculation 

Electron temperature can be calculated by using both “hot” and “cold” probe measurements.12 Cold 
measurements refer to measurements taken with no filament heating. Equation 1 uses the potential drop across the 
collector sheath to calculate the electron temperature. In this equation, kB is the Boltzmann constant, Te is the 
electron temperature, Vf is the cold probe floating potential, and e is the electron charge. The error in this 
temperature calculation is ±17%.13 
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Axial and radial electric fields at each location inside the thruster are also presented below. A central difference 

method is used with the plasma potential to calculate the electric field. The forward difference technique is used for 
the first point, and backward difference approach for the last point. 

III. Results and Discussion 
The Hall thruster operating conditions for the internal emissive probe measurements are given in Table 1. 

Measurements are taken with xenon at discharge voltages of 500 and 600 V and an anode flow rate of 10 mg/s. 
Corresponding krypton points are taken that match the power levels of the xenon points. For each operation point, 
performance was optimized by monitoring thrust and thruster operating conditions to calculate real-time 
efficiencies. The magnet settings were varied and the true maximum efficiency for each operation point was found 
previous to this experiment. Therefore, each operation point has it own unique and optimized magnet settings.  

For each operating condition the plasma potential, the electron temperature, axial electric field, and radial 
electric field are given. In the following maps, the magnetic field topology pathlines are overlaid with the plasma 
potential. The magnetic fields have been calculated using the 3D magnetostatic solver Magnet 6.0 by Infolytic. 

 
Table 1. Thruster Operating Conditions 

Point 
# Propellant Vk,  

V 
Vd, 
V 

Id,  
A 

Anode 
Flow, mg/s 

Cathode 
Flow, mg/s 

Inner 
Coil, A 

Outer 
Coil, A 

Trim 
Coil, A 

Anode 
Effic., % 

1 Xenon -11.7 500 9.27 10.00 1.00 2.90 2.87 -0.87 66.1 
2 Xenon -12.3 600 9.59 10.00 1.00 3.17 3.42 -1.08 63.8 
3 Krypton -14.4 500 9.27 7.77 0.78 1.79 2.27 -0.43 56.6 
4 Krypton -13.3 600 9.59 7.80 0.78 1.98 2.18 -0.46 54.9 

A. 500V Comparison 
The internal plasma potential map for xenon and krypton at 500 V is shown in Fig. 9. These cases show a strong 

correlation between the magnetic field lines and the plasma potential. The xenon case displays a strong focusing in 
the equipotential lines that is due to the focusing effect of the magnetic lens. This behavior is also demonstrated 
computationally by Keidar.37 However, the krypton equipotential lines have a less concave shape and are actually 
defocusing. This result is expected because krypton has been shown to have a larger beam divergence than xenon.10  
The differences in the shape of xenon and krypton equipotential lines are strongly related to their different magnetic 
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field topologies. Krypton operation requires lower magnet currents to achieve optimum efficiency and utilizes a 
weaker plasma lens. Efficiency optimization for the krypton data points are strongly connected to the propellant 
utilization optimization.10 With propellant utilization being such an important focus of optimization, other efficiency 
components (such as beam divergence) suffer.  

 
Figure 9. Plasma Potential Map for Xenon (a.) and Krypton (b.) at a Discharge Voltage of 500 V 

Electron temperature mapping for the 500 V cases are shown in Fig. 20. There is a region of high electron 
temperature that begins immediately upstream of the acceleration zone and continues into the acceleration zone. 
This region is similar in dimension and magnitude for both propellants, although in the krypton case the acceleration 
zone starts slightly farther downstream. The maximum electron temperature of both xenon and krypton cases 
reaches approximately 50 eV, although there is one “hot” spot in the krypton case that reaches 60 eV. It is important 
to note that the least robust aspect of this study is the electron temperature calculation. For this reason, the maximum 
electron temperature for the xenon and krypton cases are considered effectively equal. Also, more conclusive trends 
in electron temperature trends are best determined with Langmuir probe measurements, which will be conducted at a 
later date. There is also an additional region of high electron temperature near the anode, which is comparable in 
magnitude to the “hot” region near the acceleration zone. The source of this anode heating is not clear, but this 
behavior is also observed by Meezan et al.12 It could be the case that the emissive probe enters a different regime of 

 
The 29th International Electric Propulsion Conference, Princeton University,  

October 31 – November 4, 2005 
 
 

7



operation that increases the error in the electron temperature calculation method. The existence of this near anode 
heating will be studied at a later date with single Langmuir probe measurements.  
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inside the discharge channel, but the krypton defocusing occurs just downstream of the exit. This means that there 
probably would not be increased wall losses due to an unusually high number of krypton ion-wall collisions. 

 
Figure 12. Radial Electric Field Map for Xenon (a.) and Krypton (b.) at a Discharge Voltage of 500 V 

 

B. 600 V Comparison  
 
As in the 500 V case, the 600 V data show a remarkable correspondence between the magnetic pathlines and the 

equipotential lines (Fig. 13). Again, this correlation between equipotential lines and magnetic field pathlines results 
in strong focusing for the xenon case and defocusing in the krypton case. Interestingly, the 600 V case also shows a 
weak “plasma jet” behavior, which has also been observed by Haas.11  This behavior is visible in the area 
downstream of the main acceleration zone where the magnetic field pathlines are slightly convex.  
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Figure 13. Plasma Potential Map for Xenon (a.) and Krypton (b.) at a Discharge Voltage of 600 V 

Figure 14 shows the electron temperature map for the 600 V cases. The same high electron temperature regimes 
exist in the 600 V case as in the 500 V case, although the anode heating zone is not captured in the 600 V krypton 
data. In the xenon case, the maximum electron temperature is about 47 eV. In the krypton case, the maximum 
electron temperature is between 50 and 60 eV in most of the discharge channel, although there is a “hot spot” on the 
inner discharge channel wall that reaches 85 eV. The high electron temperature regions are similar in dimension for 
the xenon and krypton cases although the krypton case is located slightly farther downstream. 

The maximum electron temperatures are similar in the 600 V and the 500 V cases. This result is expected since 
the electron temperature is anticipated to saturate near 50-60 eV due to discharge channel wall losses.13,14,39,40 Since 
wall losses are the driving factor in determining electron temperature, it is not surprising that the xenon and krypton 
cases saturate at approximately the same electron temperature.  
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Figure 14. Electron Temperature Map for Xenon (a.) and Krypton (b.) at a Discharge Voltage of 600 V

 
The axial and radial electric fields 

are shown in Figs. 15 and 16, 
respectively. Figure 15 illustrates that 
krypton’s acceleration zone is longer 
and located farther downstream than 
the xenon case. The maximum axial 
electric fields are 150 V/mm and 115 
V/mm in the xenon and krypton cases, 
respectively. Also visible in Fig. 15 is 
the potential well located between the 
axial locations of 40 and 45 mm.  

Figure 15. Axial Electric Field Map for Xenon (a.) and Krypton (b.) 
at a Discharge Voltage of 600 V 

The radial electric fields shown in 
Fig. 16 demonstrate the strong 
focusing and defocusing seen in the 
xenon and krypton cases, respectively. 
The maxim radial electric field is 36 
V/mm for the xenon case and 28 
V/mm in the krypton case, which is 
greater than 20% of the maximum 
axial electric field. The maximum 
radial electric field is just upstream of 
the discharge channel exit in the xenon 
case and begins at the exit for the 
krypton case. As in the 500 V case, 
this suggests that there would be no 
unexpectedly high wall losses due to 
this krypton defocusing. 
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Figure 16. Radial Electric Field Map for Xenon (a.) and Krypton 
(b.) at a Discharge Voltage of 600 V 

C. Acceleration Zone Dimensions 
For the operation points given in Table 1, 

the average acceleration zone start, end, 
lengths, and the amount of the acceleration 
zone located outside the thruster are given in 
Table 2. The acceleration zone start is 
defined to be the point at which the 90% of 
the potential drop remains; the acceleration 
zone end is the point at which the 10% of the 
acceleration drop remains. The average is 
calculated by taking the mean of the 5 radial probe sweeps
4.6 mm farther downstream than the corresponding xenon p
krypton acceleration length is 1.9 and 7.1 mm longer for kry
both xenon and krypton have a significant portion of their 
krypton’s acceleration zone extends much farther than xen
downstream, is longer in length, and is almost entirely loca
that krypton has a larger beam divergence than xenon.6,10

discharge channel centerline will have less chance to coll
freely to high angles off thruster centerline.  

The dispersion efficiency characterizes the effect of the 
given by the equation: ηd=‹va›2/‹va

2›. In this equation, va 
length, one might expect krypton to have lower dispersio
analyzer measurements indicate that krypton actually has a
ion velocity dispersion is dictated by the ionization zone, t
must be occurring upstream of the acceleration channel. Un
study this behavior in detail (e.g. Langmuir probe measurem

Point 
# P

1 
2 
3 K
4 K
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Table 2. Acceleration Zone Dimensions 

ropellant Vd, 
V 

Avg. 
Length, 

mm 

Avg. 
Start, 
mm 

Avg. 
End, 
mm 

% 
Outside 
Thruster 

Xenon 500 17.3 33.8 51.2 76.0 
Xenon 600 15.1 32.4 47.5 62.8 
rypton 500 19.9 35.5 55.4 87.6 
rypton 600 22.2 37.0 59.2 95.4 
. The krypton acceleration zone begins between 1.7 and 
oints for the 500 and 600 V cases, respectively. Also, the 
pton in the 500 and 600 V cases, respectively. Although 

acceleration zone located outside the discharge channel, 
on’s. Since the krypton acceleration zone starts farther 
ted outside of the discharge channel, it is not surprising 
  The krypton ions that are accelerated away from the 
ide with the channel wall and therefore will accelerate 

spread in ion velocities in the Hall thruster plume and is 
represents the ion velocity. With a longer acceleration 
n efficiency than xenon. However, retarding potential 

 smaller spread in ion velocity than xenon cases.10 Since 
his indicates that the majority of the krypton ionization 
fortunately, further studies will have to be conducted to 
ents).  

n Conference, Princeton University,  
ember 4, 2005 



The start and end of the acceleration zones for the 500 and 600 V cases can be seen in Fig. 17. This figure 
illustrates krypton’s longer acceleration length and that a large percentage of the acceleration zone appears outside 
of the discharge channel. Roughly speaking, the acceleration zone for krypton begins only slight farther downstream 
than the corresponding xenon cases. 
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Figure 17. Acceleration Length for Xenon and Krypton at a Discharge Voltage of 500 V (a.) and a 

Discharge Voltage of 600 V (b.) 

a.                 b. 

 

IV. Conclusion 
The internal plasma structure inside the NASA-173Mv1 has been successfully mapped for xenon and krypton 

operation. The plasma potential profile is shown to be well correlated with the magnetic field pathlines. In the xenon 
cases the ions are focused toward the center of the discharge channel and in the krypton cases the ions are 
defocused. The maximum radial electric field in all of the xenon and krypton cases is equal to or greater than 20% of 
the maximum axial electric field. In addition, the acceleration zone is found to be longer and located further 
downstream for the krypton cases. These trends act to defocus the krypton ions and explain the larger beam 
divergence that is an important contributing factor to the xenon-krypton efficiency gap. 

Both propellants have high electron temperature regions that are similar in length and electron temperature. The 
high electron temperature region near the acceleration zone is located slightly farther downstream in the krypton 
cases. The maximum electron temperature is approximately 50-60 eV for krypton and xenon at both 500 and 600 V. 

The defocusing of the ions is attributed to krypton’s magnetic field topology, which is optimized for krypton at a 
much different magnetic field topology than that corresponding to xenon. Krypton optimization is centrally focused 
on propellant utilization optimization and for this reason other efficiency components (such as beam divergence) 
suffer. There is a complicated coupling between beam divergence and propellant utilization that should be a focus of 
future study. This raises the question, of what can be done to design a krypton Hall thruster to optimize for both 
propellant utilization and ion beam focusing. 
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