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Abstract

The renewed interest in colloidal thruster technology for micropropulsion applications has rekindled
research on the physics of these electrically driven jets. In this paper we address two aspects of
this topic. Firstly, from a numerical perspective, we explore the cone-jet transition region for a
Formamide solution near the minimum flow limit (η ≈ 1). Secondly, from an analytical standpoint,
we study the movement of charges within the colloidal jet and its effect on the non-neutral layer
thickness.

Numerical results have been obtained for a Formamide solution with conductivity K = 10−3Si/m
for low flow rates 1 ≤ η ≤ 4. Our simulation is shown to conserve mass, charge and energy and
our results show good agreement with published experimental data. For a high dielectric constant,
the results also show finite conduction currents in the jet and a weak dependence of the convection
current on flow rate.

Analytical estimates have been obtained for the non-neutral and ambipolar layers created by an
electrical field normal to the liquid surface. It is shown that the non-neutral layer is thin compared
to the liquid jet. This result justifies the use of a constant conductivity in numerical models.

1 Introduction

The basic physics of colloidal thrusters have been addressed in numerous experimental and
theoretical papers. These papers have successfully yielded basic scaling laws for the cone and
jet regions as seen in the works of Fernandez de la Mora [1], Hohman[2], and Martinez-Sanchez
[3] to name a few. However, the transition region from the cone to the free jet, see Figure 1,
has proven exceptionally difficult to model accurately. Some of the difficulties reside on various
factors including the strong coupling between the fluid mechanics and electrostatic aspects
of the problem, the strong gradients observed, and the uncertainty over the behavior of the
electrical charges in the fluid. A better understanding of this transition is critical in order to
explain the physics of the electrospray current, predict droplet size, and explore the minimum
flow rate stability threshold.

In recent years several numerically based models have been presented to simulate the cone-jet
transition region. The numerical work in this area may be traced back to the model of Eggers
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Fig. 1. Structure of the cone jet for Ethylene-Glycol, η = 2,Re=10.2, courtesy of Fernandez de la Mora
[1]

and Dupont for gravity and pressure driven fluid jets[5]. The success of this and subsequent
models suggested that a similar approach could be used for electrified jets. As of this writing
several models have been published such as the works of Hohmann et al [2], Hartmann et al
[4] and Yan et al,[10]. The model presented by Hartmann computes the cone and jet shape,
the electric fields inside and outside of the cone, and the surface charge density. Hartmann’s
model uses a one dimensional flow approximation. Yan’s model is similar to that of Hartmann,
but assumes an axisymmetric parabolic velocity profile. The model presented by Hohmann and
coworkers is also based on cylindrical coordinates but assumes that the jet is long and slender,
thus allowing for a perturbative expansion in the aspect ratio.

In this paper we present the results from our quasi-one-dimensional cone-jet model. In par-
ticular we show results for higher electrical conductivities than those published before (K =
10−3Si/m), we also show results for low flow rates (η ≈ 1.3), and we explore the effect of
parameter changes on flow variables. We also present a detailed study of the thickness of the
non-neutral layer in the jet, which justifies the use of a constant conductivity in numerical
models of the cone-jet regime.

2 Cone-jet numerical model

In our case the cone-jet model formulation is based on local spherical symmetry. The model
assumes that the jet is axisymmetric, slender, quasi-one dimensional, and unsteady. A explicit
multistage fourth order Runge-Kutta scheme (RK4 ) is employed to time march the simulation.
The RK4 scheme, like other explicit schemes, is easy to implement and yields information on
the dynamics of the cone-jet structure.

The system of equations solved includes : mass conservation, momentum conservation, internal
charge conservation, surface charge relaxation, an electrostatic boundary surface element solver,
as described by [8], and the system is closed by specifying two local surface boundary conditions.
The equations and their detailed explanation can be found in [6].

In this paper we only reproduce the surface boundary conditions due to changes we have made
in their formulation. For the normal direction boundary condition the normal electrical stress
term is given by [7]
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where γ is the surface tension coefficient, µ is the fluid viscosity, P0, is the pressure at the axis,
and h is the local jet radius, u′ is the shear velocity defined as u′ = (uα−u0)/2, u = (uα+u0)/2
is the mean velocity, uα is the flow velocity at the jet surface and u0 is the flow velocity at
the jet axis. The tangential boundary condition is obtained in the same fashion and contains
contributions from the viscous shear stresses and the corresponding tangential electrical stress.

u′ =
σEth

4µ
· (3)

The electrostatic boundary surface element solver has been modified from its original form (as
presented by Lozano et al [8]). In Lozano’s case the electrical charges were assumed to be fully
relaxed, so that σ = ε0E

o
n. In our case the liquid is not fully relaxed and the liquid potential is

now calculated by

φ = B(V ) + A(Eo
n − Ein

n ) (4)

where the vector B comprises the effect of charges on the needle on the liquid potential and the
full matrix A the effect of liquid charges on the liquid potential[8]. In the case of Lozano and
coworkers the normal internal electric field (Ein

n ) was identically zero, whereas in our case it is
calculated by Ein

n = ((Eo
n)− σ/ε0)/ε. The electrostatic solver neglects any space charge effects

and assumes that the non-neutral and ambipolar layers of the liquid are thin (see section 3.3).

Summarizing, the model solves for nine variables : the jet radius (h), the liquid surface velocity
(uα), the liquid axis velocity (u0), the surface charge density (σ), the normal outside electric
field (E0

n), the tangential outside electric field (Et), the liquid potential (φ), the pressure at the
axis (P0) and the pressure at the liquid surface (Pα).

The equations are solved in a sequential fashion, first the time dependent equations (e.g. mass,
momentum, and surface charge relaxation) are advanced in time for a given number of iterations
while the electric fields are kept constant. The electric fields are updated, (which requires a non-
local matrix calculation) and the cycle is repeated until the system is fully converged to steady
state.
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Fig. 2. Dimensionless spray current ζ versus η comparison between experimental and numerical data.
Experimental values from de la Mora[1]. Numerical data based on baseline properties for different flow
rates.

3 Results and discussion

In the following, we use some of the notation and non-dimensional variables of Fernandez de
la Mora[1]. In particular, the flow rate (Q) is reported in terms of the dimensionless variable η
and the current is reported in terms of the dimensionless group ζ :

η =

√
ρKQ

γεε0
, ζ =

I

γ(ε0/ρ)1/2
. (5)

The baseline fluid for our calculations has the properties of Formamide, with density ρ =
1130kg/m3, viscosity ν = 3.33x10−6m2/sec, surface tension coefficient γ = 0.050N/m, conduc-
tivity K = 0.001Si/m, and relative permittivity ε = 111. The nozzle radius has been set to
h0 = 10µm and the collector is at a distance L = 150µm from the nozzle. The boundary condi-
tion for the charge density at the nozzle is set as σ0 = 0, and the flow rate (Q) is specified. The
applied voltage is set according to an approximate formula for the minimum starting voltage

V =

√
γh0

ε0
ln

(
4L

h0

)
(6)

which for the baseline data give 970 Volts.

3.1 Flow rate parameter study

Figure 2 shows the comparison between experimental data of Fernandez de la Mora for multiple
solutions and our simulation. It can be seen that the numerically computed currents compare
quite well to the experimentally observed values of de la Mora. These results are quite encour-
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Fig. 3. Convection (Ic), conduction current (Ik) and total current (I = Ic + Ik) for Formamide
(K = 1× 10−3Si/m, ε = 111) at various flow rates (arrows point to η → 1)

aging, although more checks against experimental values need to be done to further ascertain
the validity of our computational results.

Figure 3 shows how the dominant electric current mechanism varies along the cone-jet for
various flow rates. It can be seen that as the flow transitions from the cone to the jet the
current changes from a conduction dominated behavior to a mixed regime with both conduction
and convection of charge. The unexpected result is that, contrary to most existing models, the
conduction current does not seem to vanish in the jet, except when minimum flow is approached.
To our knowledge, only the results of Yan et al [10] have also shown finite conduction currents.
It is also interesting to note that the convection current shows only a weak dependence to
changes in η (flow rate).

Finally we show the results for the remaining variables of our model. Figure 4 shows the jet
radius (h), mean velocity (u) and surface charge density (σ),liquid potential (φ), normal outside
Electric field (Eo

n) and the tangential electric field (Et) as they progress from the nozzle to the
collector. From these results its apparent that a qualitative change in the flow behavior occurs
as η → 1. The transition region becomes smaller, the flow velocity increases dramatically and
the electrostatic behavior changes considerably. It can be seen that for the η = 1.34 results the
potential in the cone region remains almost constant, once the cone becomes a jet the potential
changes rapidly until it reaches zero at the collector. The consequences of this behavior affect
quite noticeably the electric fields. The maximum values for the electric fields coincide with the
point where the convection and conduction currents equal each other. The sudden increase of
both electric fields near the collector is due to end boundary condition which sets the liquid
potential to zero. Computations using a total length of 300µm (instead of the 150µm of the
data sets of Figure 4) show that the gradients at the end of the jet simply translate downstream
leaving the cone and the transition regions essentially unchanged.

Initial results have been obtained for a modified baseline fluid (K = 1 × 10−3Si/m, ε = 10).
These results can be seen in Figure 5 and Figure 6. The current results for this second set,
contrary to the previous high dielectric constant data set, show a strong variation of the con-
vection current with η (flow rate). In this case the conduction current tends to zero in the jet as
analytical models predict. The slope f(ε) ≡ dζ/ dη as defined by Fernandez de la Mora [1] has
an experimental value of f(ε) � 6.3 to 7.5 which compares well to our results of f � ζ/η ≈ 7.
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Fig. 4. Data progression for Formamide (K = 1 × 10−3Si/m, ε = 111) for various flow rates η = 2
(dash-dot line) to η = 1.34(dashed line). Applied voltage 970 V, collector at 150µm

2 4 6 8 10 12 14

x 10
-5

0

1

2

3

4

5

6

x 10
-8

cu
rr

en
t [

A
]

[m]

I

Ic

Ik

Fig. 5. Convection (Ic), conduction current (Ik) and total current (I = Ic+Ik) for modified Formamide
(K = 1× 10−3Si/m, ε = 10) at two flow rates (η = 1.69 solid line) and η = 1.96
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Fig. 6. Results for the modified baseline fluid with ε = 10. η = 1.69 (solid line) and η = 1.96.
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A second point of interest is that the cone region for both η(flow rate) values matches Taylor’s
angle (αT = 49.2o) whereas the case with ε = 111 shows smaller angles (α < αT ). It should be
pointed out that this data set has not reached steady state yet, but the trends and qualitative
behavior of the variables are not expected to change considerably. Further investigation is under
way to better understand these results and explore in more detail the effect of the dielectric
permittivity (ε) on the colloidal jet.

3.2 Energy tracking

In this section we show an energy analysis for the case η = 1.34(dashed line in Figure 4) with
baseline properties and an operating voltage of 970 V. We calculate the power input of the
system by multiplying the extraction voltage by the total resulting current. This power is used
for accelerating the flow, setting up the cone-jet shape (surface formation), and some of it is
dissipated by viscous stresses, and Joule heating. In our case we present the energy analysis in
terms of voltage V = Power/I. The sum of all the voltage contributions should ideally be the
original extraction voltage, thus conserving energy.

The kinetic voltage is given

Vk =
Qρ

I
u2

z=L (7)

where I is the total current, Q the flow rate, ρ the density and u is the exit velocity. This
voltage is used to accelerate the fluid to its final velocity. For the η = 1.34 test case it accounts
for 66% of the energy usage. The second contribution to the voltage, with 24% is due to Joule
heating. This voltage is defined by

VΩ =
K

I

∫ L

0

2π(hEt)
2

1 + cos(α)
dz. (8)

The third contribution is the energy needed to overcome surface tension and set the shape of
the liquid jet, which in this case takes 9% of the available power. The formula for this voltage
is given by:

Vγ =
γπhu

I
. (9)

The remaining contribution is that due to viscous shear stresses :

Vµ =
µ

I

∫ L

0
(u′)2dz. (10)

which only accounts for < 1%. Adding up all the different contributions the applied potential
should be recovered. In reality a small percentage, in the order of 1- 3% of the applied potential
is unaccounted for. This ”lost” energy may be due to numerical diffusion, and the fact that the
simulation has not settled completely to steady state.
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3.3 Ion transport analysis

The component En of the outer field normal to the surface of the liquid is reduced by a factor
ε on crossing the surface, due to the instantaneous polarization of the surface dipoles. The field
Es = En/ε at the liquid side of the surface pushes positive ions toward the surface and negative
ions away from the surface, leading to a non-neutral layer that, on reaching its equilibrium,
would screen the bulk of the liquid from the surface field. The structure and development of
this layer, and of a thicker quasineutral layer of ambipolar diffusion that it may induce further
into the liquid, are analyzed here on the basis of a non-stationary one-dimensional model.
The correspondence between this model and the actual stationary but spatially evolving layers
around the surface of the liquid in the bulk-to-surface current transfer region is straightforward
when the thickness of the layers is small compared with the radius of the jet. Then it suffices
to replace ∂/∂t by vs∂/∂s in the equations below, where s and vs are the distance along the
surface and the velocity of the liquid at the surface. The correspondence is less simple and only
qualitative when the thickness of the layers is of the order of the radius of the jet.

In the one-dimensional model, assuming a fully dissociated 1-1 electrolyte, the densities of
positive and negative ions, n±, and the electric field E satisfy

∂n±

∂t
=

∂

∂x

(
∓κ±n±E +D±∂n

±

∂x

)
(11a, b)

∂E

∂x
=

e

εε0

(
n+ − n−)

(12)

where x is the distance to the surface, negative in the liquid, κ± are the mobilities of the positive
and negative ions, and D± = (kT/e)κ± are their diffusivities. At the surface, in the absence of
ion evaporation and neglecting the variation of the charge of the inner Stern layer,

x = 0 : j± = 0, E = Es = En/ε, (13)

where j± = ±κ±n±E − D±∂n±/∂x are the number fluxes of the ionic species. In the liquid
away from the surface

x → −∞ : n+ = n− = n0, (14)

where n0 is the concentration of the neutral solution. Initial conditions and a law giving the
time dependence of the surface field Es should be specified to complete the formulation of the
problem. These, however, will not enter the qualitative discussion that follows.

The well-known stationary solution of (11)–(14) for a constant Es can be written as

√
n0

n+
=

√
n−

n0

= tanh

[
arg tanh

√
n0

n+
s

− x

21/2λ
D

]
,

E

E
D

= λ
D

d ln(n+/n0)

dx
, (15)

where n+
s , the density of positive ions at the surface, is given by

n+
s

n0

= 1 +
Es

E
D

√√√√1

2
+

E2
s

16E2
D

+
E2

s

4E2
D

. (16)

Here λ
D
= (εε0kT/e

2n0)
1/2

is the Debye length and E
D
= kT/eλ

D
.
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The excess of positive charge and the defect of negative charge in the stationary layer are

C+ =
∫ 0

−∞

(
n+ − n0

)
dx and C− =

∫ 0

−∞

(
n0 − n−)

dx, (17)

respectively, whose values scaled with λ
D
n0 depend only on Es/ED

. For small values of Es/ED
,

leading to (n+
s − n0)/n0 ≈ Es/

√
2E

D
 1, equations (17) give C+ ≈ C−. In any case, C± =

O(εε0Es/e).

The time it takes to establish this stationary layer, for example if Es were switched abruptly
from zero, can be estimated from (11) and (12). The balance of all the terms of these equations
during a transient reads, in orders of magnitude,

∆n

te
=

κn0E

δ
= D

∆n

δ2
and

Es

δ
=

e∆n

εε0
, (18)

where ∆n, δ and te are the characteristic values of (n+ − n−), the thickness of the layer and
the duration of the transient, to be determined from these order of magnitude balances, and κ
and D are the characteristic values of the mobilities and diffusivities, taken to be of the same
order for the two ionic species. The balances (18) yield

∆n

n0

=
Es

E
D

, δ = λ
D
, te =

εε0
en0κ

. (19)

The first two of these results could have been anticipated from the stationary solution (15)–
(16), and the third gives a characteristic time of the order of the electric relaxation time of the
liquid evaluated with the conductivity K = en0 (κ

+ + κ−) of the neutral solution.

The estimates (19) are valid for Es/ED
�
∼ 1, but the surface layer develops a two-tiered structure

when Es/ED
� 1. Then negative ions are depleted from a thin sublayer where E = O(Es)

and n = O(nf ), with nf = n0 (Es/ED
)2 � n0. The characteristic thickness of this sublayer is

kT/eEs, which is the Debye length evaluated with nf instead of n0. This is followed by a layer of
thickness λ

D
where E/E

D
and ∆n/n0 are both of order unity. The thin sublayer is responsible

for most of the excess of positive charge, which is C+ = O(εε0Es/e), while C
− = O(εε0ED

/e).

In the experiments with NaI in Formamide (ε = 111) that motivated the numerical computa-
tions of this paper, n0 ≈ 9.3× 1022 m−3 was required to attain a conductivity K = 10−3 S/m.
In these conditions λ

D
= 4.14× 10−8 m and E

D
= 106 V/m. The non-neutral layer is therefore

thin compared with the radius of the jet observed numerically (≈ 10−6m)and experimentally,
and E

D
is slightly larger than the highest surface field En/ε, which is about 8 × 105 V/m at

the conditions of minimum flow rate.

The relaxation time te is to be compared with the characteristic time of variation of the surface
field, which is the residence time of the liquid in the bulk-to-surface current transfer region, tr
say, when the model is applied to this region. If te/tr  1, then the layer around the surface
screens the bulk of the liquid from the surface field. If te/tr is not small, then the quasi-static
layer has no time to develop and fields of order En/ε should be expected in the liquid.

The surface layer is not strictly stationary when te/tr  1; rather it undergoes a quasisteady
evolution in which C± in (17) vary in a time of order tr. The required inflow and outflow of
charge to the surface layer originate in a thicker quasineutral region of ambipolar diffusion.
There (12) reduces to the quasineutral approximation

n+ = n− = n (20)
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and the sum and difference of the two equations (11) divided by D± give

∂n

∂t
= D

∂2n

∂x2
and

∂n

∂t
= κ

∂

∂x
(nE) , (21)

where

D =
2

1/D+ + 1/D− and κ =
2

1/κ− − 1/κ+
. (22)

Boundary conditions for equations (21) are n = n0 for x → −∞ and the conditions of matching
with the thinner non-neutral layer

dC±

dt
= ±j± = κ±nE ∓D±∂n

∂x
, (23)

to be imposed effectively at x = 0. Defining α = (dC+/ dt) / ( dC−/ dt), which can be replaced
by unity when Es/ED

 1, these conditions can be rewritten as

D+ +D−

D+ − αD−D
∂n

∂x
=

κ+ − κ−

κ+ + ακ−κnE =
dC−

dx
. (24)

The characteristic thickness of the region of ambipolar diffusion is δa =
(
Dtr

)1/2
, from the

first equation (21). Here tr is the time available for the diffusion layer to grow, which is the
residence time of the flow in the current transfer region in the application at hand. As can be
seen, λ

D
/δa = O(te/tr)

1/2  1. The characteristic variation of n across the layer of ambipolar

diffusion can be estimated as ∆na = O
[
(δa/D) ( dC−/ dt)

]
, from the equality of the first and

last terms of (24). Using here dC−/ dt = O (∆nλ
D
/tr), with ∆n given by (19), and the estimate

of δa above, this result becomes ∆na/n0 = O
[
(∆n/n0)(te/tr)

1/2
]
 1. The characteristic value

of the electric field is E/E
D
= [(Es/ED

)(te/tr)]  Es/ED
, from (21) and the estimates above.

Strictly, the value of n0 to be used in (15)–(17) for the non-neutral layer does not coincide with
the concentration in the bulk of the liquid, because of the intervening ambipolar diffusion layer.
The difference, however, is small in view of the small value of ∆na/n0. For the same reason,
the conductivity of the liquid can be approximated by the constant conductivity at n = n0

everywhere outside the non-neutral layer.

The estimate of δa needs to be changed when it comes out larger than the radius of the jet.
Then ambipolar diffusion extends to the whole cross-section of the jet, of characteristic radius
rs say, and the variation of the charge density required to feed the non-neutral surface layer is
∆na/n0 = O [(∆n/n0)(λD

/rs)].

4 Conclusions and future work

Numerical results for a Formamide solution with conductivity K = 10−3Si/m and flow rates
1.34 ≤ η ≤ 2.1 have been presented. The numerical results conserve mass, charge and energy
and the predicted current compares quite well with published experimental data of de la Mora
[1]. Further examination of our results shows that (except near the minimum flow) there still
exists a finite conduction current in the jet downstream of the transition region. It is also shown
that the convection current behaves as a weak function of the flow rate for the baseline liquid
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properties. It was found that the minimum stable flow occurs when the asymptotic downstream
conduction current approaches zero, and, at least for the parameters of this study, that this
limit is reached at η ≈ 1. Finally for the case of η = 1.34 we have shown a power usage
breakdown which accounts for 97% of the available power. On the other hand, for a liquid
with ε reduced to 10, the conduction current is seen to vanish shortly after the transition (for
1 ≤ η ≤ 2 at least), and the convection current now does vary with Q1/2.

The analytical section of the paper addressed, the behavior of the non-neutral layer and am-
bipolar layer of a liquid subjected to a normal electric field at the surface. Order of magnitude
arguments and calculations (for our baseline properties) conclude that the non-neutral layer
is thin (a few percent) compared to the jet diameter. This conclusion justifies the use of a
constant conductivity K to model charge transport in the liquid.
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