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Abstract

The longitudinal oscillations highlighted by numerical models of Hall thrusters in the range100 −
500 kHz own several characteristics that are reminiscent of the so-called transit-time oscillations observed
experimentally. The corresponding dispersion relation is derived from one-dimensional ion transport equa-
tions, assuming a constant discharge current. It correctly anticipate the presence of two distinct unstable
regions in the near-anode region and in the acceleration region. The role of the ionization degree on the sta-
bility and the close relationship between the phase velocity and the ion velocity both support the hypothesis
that this oscillation mode is indeed the counterpart of the transit-time instability observed in experiments.
As a corollary, an effective mean of suppressing this instability in numerical models without affecting low-
frequency modes is outlined.

1 Introduction

Transit-time oscillations have been experimentally characterized by A. I. Morozovet al. as longitudinal
plasma oscillations whose frequency is approximately inversely proportional to the time of flight of ions inside
the channel [1, 2]. Their apparition has been found to be mostly conditioned by a high degree of ionization,
either resulting from the use of an easily ionized gas or from a high discharge voltage.

Interestingly, high frequency oscillations propagating with the velocity of ions have been repeatedly ob-
served in kinetic, hybrid and fluid models of Hall thrusters [3, 4, 5, 6], exhibiting features that strongly remind
the experimental transit-time instability. Although these oscillations were first believed to be a simulation arti-
fact [3], it has now become clear that they do neither depend on the modeling paradigm nor on the numerical
mesh, thus ruling out the possibility of a numerical instability. The prediction of such oscillations in numer-
ical simulations of SPT-100 type thrusters remains nevertheless intriguing, as no such instabilities have been
reported to date in such engines.

Although a stability criterion for transit-time oscillations has been proposed [7], its validity was later
strongly questioned [8] and the impact of the ionization degree has remained unexplained. Besides, the ap-
parent absence of transit-time instabilities in modern Hall thrusters strongly challenges the predicted relation-
ship between unstable modes and sharp magnetic field gradient. Notwithstanding the former concerns, it is
acknowledged that this theory is not adequate to describe the instability exhibited by numerical models [5].
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2 Manifestation in numerical models

Although the discussion below is mostly based on the results of a one-dimensional fluid model of Hall
thruster, other authors have shown that the main characteristics of this instability do not strongly depend upon
the underlying numerical scheme [4]. We shall thus omit here the description of the fluid model, which can be
found elsewhere [9, 10].

The numerical transit-time instability results in very strong oscillations of the local plasma parameters
(plasma density, ion velocity, electron temperature, . . . ) and of the discharge current. The amplitude of dis-
charge current oscillations may be superimposed on the low-frequency (so-called “breathing-mode”) oscilla-
tions, as shown by figure 2. Surprisingly enough, transit-time oscillations are still recovered and preserve the
same characteristics when a constant discharge current is prescribed instead of a constant discharge voltage.
In most cases, transit-time oscillations are confined to the ion acceleration region, where the magnetic field is
high, but small oscillations may also be observed in the near-anode region in some circumstances.

The evolution of the ion density and velocity in a case where both regions are unstable is shown on figure 1.
Let us emphasize that on this example, the discharge current was prescribed: otherwise stable regions would
still fluctuate due to the global influence range of discharge current oscillations.
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FIGURE 1: Simulated transit-time oscillations of ion density and ion velocity from simulations, for a prescribed
discharge current (Id = 3 A).
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FIGURE 2: Typical samples of simulated discharge current (thick lines) and ion current at the exhaust (thin
lines) when transit-time oscillations are superimposed on low frequency oscillations. Left: results obtained
with a fluid model [9, 10]. Right: results obtained with a hybrid model by G. J. M. Hagelaar, J. Bareilles,
L. Garrigues and J.-P. Boeuf [5].

3 Stability study

3.1 Governing equations

A dispersion relation for the transit-time instability can be derived from the continuity and momentum
equation for cold ions:

∂ni

∂t
+

∂ (niViz)
∂z

= νi ne (1)

∂ (niViz)
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+
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(
niV

2
iz

)
∂z
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wheremi, ni andViz are respectively the mass, density and axial velocity of ions,ne is the density of electrons,
νi is the ionization frequency, andEz the axial electric field. This electric field can then be evaluated from the
generalized Ohm’s law

Vez = −µe

(
Ez +

κTe

e ne

∂ne

∂z

)
(3)

whereµe is the axial electron mobility andVez the axial drift velocity of electrons.Vez can in turn be eliminated
using the conservation of the total current

Id = Ii + Ie = eA (niVi − neVe) (4)

whereIi andIe are respectively the ion and electron currents, whileA stands for the cross-section area of the
channel.

After substitution ofEz in the ion momentum equations (2) and assuming quasi-neutrality (i.e. ne = ni),
one obtains the following system:
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3.2 Dispersion relation

The ion density and velocity are linearized around a stationary state (ni0, Viz0), expressing the perturbed
quantities as

ni = ni0 + ni1 exp [j (k z − ω t)] (7)

Viz = Viz0 + Viz1 exp [j (k z − ω t)] . (8)

whereni0 andViz0 verify

d (ni0Viz0)
dz

= νi ni0 (9)

d
(
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)
dz

+
κTe

mi ne

dni0

dz
= ni0

e

mi

1
µe

(
Id

A eni0
− Viz0

)
. (10)

It is clear from figure 2 that the discharge current is much less affected by transit-time oscillations than the ion
current. Therefore, we consider all parameters butni andViz constant in the system (5, 6). After linearization,
the following dispersion relation is obtained:

ω2 + ω (−2k Viz + jA) + B + k2V 2
iz

(
1− 1

Mi

)
+ j k Viz C = 0 (11)

where the isothermal ion sound velocity and ion Mach number are respectively given by

Cs =

√
κTe

mi
, (12)

Mi =
Viz

Cs
, (13)

while other coefficients can be simplified as follows, using equations (9, 10):
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[
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2
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]}
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C = −∆ν (1 + 2Y ) , (16)

with
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The solution of equation (11) is

ω = k Viz − j
A
2
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, (20)
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with

ε =

{
1 if k VizR > 0
−1 if k VizR < 0

(21)

and

Q = −
(
A2

4
+ B

)
, (22)

R = − (A+ C) = − 1
1− α

(2νi + ∆ν) = − 1
α

e

mi

1
µe

. (23)

4 Analysis of the short-wave behavior

4.1 Validity of the asymptotic short-wave behavior.

Since the dispersion relation was derived from a linearization around the local state, the long-wave behavior
(k → 0) is meaningless. Fortunately, much insight can be gained from a study of the asymptotic short-wave
limit (k → ∞). Indeed, the growth rate obtained from equation (20) is characterized by a monotonic behavior
and quickly saturates above some critical value ofk, so that the behavior fork → ∞ actually defines most of
the unstable spectrum. Defining for instance a critical wavenumber

kc =
1
Cs

√
M2

iR2

2
+ 2 |Q| (24)

it can be shown that the growth rate satisfies∣∣∣∣ Im ω(∞)− Im ω(k)
Im ω(∞)− Im ω(0)

∣∣∣∣ < 0.202 ∀ k ≥ kc , (25)

which means thatIm ω(k) is already very close to saturation abovekc. The value1/kc is of the order of the
characteristic length of plasma parameters gradients,i.e. it is in general of the order of the length of the device.
Since wavenumbers larger than the extend of the device are not likely to occur, it can thus be expected that the
asymptotic growth rate fork →∞ constitutes a reasonable approximation of the actual growth rate.

4.2 Phase velocity and frequency

In the short-wave limit, the phase velocity converges to

lim
k→∞

(
Re ω

k

)
= Viz ± Cs . (26)

If Q is negative (which is generally the case) the phase velocity satisfies additionally

Viz − Cs <
Re ω(k)

k
< Viz + Cs ∀ k , (27)

which confirms the observed correlation between the propagation velocity of the wave and the velocity of ions.

4.3 Frequency

The main frequency is theoretically determined by the wavenumbers associated with the highest growth
rate. In the present case, the growth rate converges at high frequencies towards

lim
k→∞

(Im ω) = −A
2
±
∣∣∣∣Mi

R
2

∣∣∣∣ . (28)
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This behavior suggests that for|MiR| −A > 0, the unstable mode will be characterized by an infinitely wide
frequency spectrum. In practice, however, high frequencies are damped by various diffusion processes. If for
instance the actual equation system includes diffusion and dissipation terms weighted by a coefficientξ:

∂ni

∂t
+

∂ (niViz)
∂z

= νi ne + ξ
∂2ni

∂z2
(29)

∂ (niViz)
∂t

+
∂
(
niV

2
iz

)
∂z

=
eEz

mi
ni + ξ

∂2 (niViz)
∂z2

, (30)

then the growth rate becomes
Im ω|ξ = Im ω|ξ=0 − ξk2 . (31)

Since the growth rateIm ω|ξ=0 of the non-diffusive equation system rapidly stabilizes ask →∞, it is likely that
the actual growth rate will present a maximum in the vicinity of the smallest possible wavenumber. Therefore,
on may surmise that the most excited wavelength will be of the order of the length of the unstable region, that
is of the order of the lengthL of the device. The main frequency characterizing the instability can thus be
expected to scale as

f ≈ Vi ± Cs

L
. (32)

4.4 Stability criterion

4.4.1 General case

Using equations (9, 10),A can be rewritten as

A =
e

mi

1
µe

+ 2
dViz0

dz
. (33)

Since the terms on the right hand side are both positive in normal circumstances, we shall assume thatA > 0
and derive from equation (28) the following stability criterion:

|MiR|
A

< 1 . (34)

4.4.2 Low ionization limit

In the case where ionization can be neglected,i.e. for

νi �
1− α

α

e

µemi
, (35)

the stability condition can be rewritten explicitly as

|Mi|∣∣∣∣∣1 +
(

1− Ii

Id

)M2
i + 1

M2
i − 1

∣∣∣∣∣
< 1 . (36)

The stable and unstable regions predicted by equation (36) are shown on figure 3.
It must be emphasized that the low ionization hypothesis is necessarily violated at the sonic point, where

the requirement of a smooth sonic transition transforms equation (35) into a strict equality. It was observed in
simulations, however, that this hypothesis is by contrast reasonably justified in the subsonic region and very
well justified in the supersonic (acceleration) region.

6



-0.2

0.0

0.2

0.4

0.6

0.8

1.0

|Mi|

Ii / Id  

√  2 -1 √  2 +11

FIGURE 3: Stable (blank) and unstable (hatched) regions for the transit-time instability, neglecting ionization.

4.4.3 Effect of ionization

In the diffusion region (|Mi| � 1), the effect of ionization can be qualitatively assessed from the low-Mach
stability criterion, obtained in the limitY → −1:∣∣∣∣Mi

α

∣∣∣∣ 1

1 + 2
µemi νi

e

< 1 . (37)

This suggests that ionization actually tends to improve the local stability in the subsonic region. Note that
remark concerns only thelocal effect of ionization, and does not hold for the ionization degreeIi/Id at the
point considered.

By contrast, the stability criterion obtained within the hypersonic approximation (|Mi| � 1) reads∣∣∣∣Mi

α

∣∣∣∣ 1
2− α

α
− 2

µemi νi

e

< 1

and highlights therefore a destabilizing effect due to ionization.

5 Discussion

5.1 Comparison with experiments

The maximum ion Mach number is in general reached close to the channel exhaust, and typically amounts
to 1.5 − 2.5. According to figure 3, if the maximum ion Mach number is such that1 < Mi <

√
2 + 1, the

stability is ultimately dependent on the ionization degree. This prediction is in remarkable agreement with the
experimental observation that gases with low ionization potential lead more often to instability, and that the
transit-time instability is visible only in the current saturation region [2].

Besides, the fact that the growth rate is not a decaying function of the frequency [equation (28)] implies that
transit-time oscillations should present a broad frequency spectrum, which is also consistent with experimental
reports [1, 2] (the failure of numerical models to recover a broad frequency spectrum is discussed later).
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FIGURE 4: Simulated transit-time oscillations of electric field and plasma potential from simulations for a
prescribed discharge current (Id = 3 A) in the same conditions as in figure 1. The reference potential is taken
in the exit plane.

There exists an apparent inconsistency between the proposed dispersion relation and the statement made in
references [1, 2] that the transit-time instability is associated with a standing wave. Contrasting the evolution of
the simulated electric field and electric potential (figure 4), however, it seems very possible that the experimental
data, which consisted uniquely in plasma potential measurements, were misinterpreted. Although it is clear
from the electric field profile that the wave is a traveling one, the plasma potential fluctuations can be easily
mistaken for standing waves due to the fact that the potential does not characterize only the local state but the
whole plasma column between the measurement point and the reference point.

5.2 Comparison with the numerical model

The low ionization criterion (36) synthesized by figure 3 predicts two unstable regions: a low-Mach/low
ionization degree region where the ion velocity can be negative, and a high-Mach region where the ionization
degree can be large.

These results are consistent with the observations made with the numerical model, where both the reverse
ion flow region close to anode (Ii < 0, |Ii| � Id) and the acceleration region close to the exhaust plane (Mi >
1) are potentially unstable (figure 1). The prediction that almost the whole supersonic region is subjected to
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transit-time oscillations when the ionization degree is high is also consistent with the behavior of the fluid
model. Finally, the fact that the reverse ion flow region is seldom affected by the instability might be explained
by the stabilizing effect of ionization, highlighted by the low-Mach stability criterion (37).

As mentioned in section 4.3, transit-time oscillations are expected to present a broad frequency spectrum.
By contrast, numerical models show very coherent oscillations with a very narrow frequency spectrum. It must
be remembered, however, that numerical models present a non-negligible level of artificial diffusion, which
acts essentially asξ in the equation system (29, 30). Therefore, high frequencies are strongly damped and the
frequency associated with the smallest wavenumber dominates.

5.3 Feedback mechanisms

The fact that a region is unstable does not necessarily means that it will be spontaneously subjected to
oscillations. Since the unstable waves are convected away, a feedback mechanism must also be present for the
mode to be self-excited.

Some of the possible mechanisms potentially able to retro-propagate information are:

1. ion acoustic waves, which propagate with velocitiesViz ± Cs,
2. the discharge current, which propagates almost instantaneously across the discharge interval,
3. electron energy, which is transported at the velocityVez.

The first mechanism is clearly a good candidate to explain the self-excited oscillations observed in the subsonic
region. In the supersonic region, however, the acoustic waves are both convected towards exit and cannot carry
information back into the channel. Simulations confirm that either the discharge current or the electron energy
can provide feedback in the supersonic region: if both of these mechanisms are disabled (e.g. by taking a
constant discharge current and a local electron energy equation), the transit-time oscillations die out.

5.4 Suppression of transit-time instabilities in numerical models

Modern Hall thrusters do not seem to be subjected to transit-time oscillations, even though these are of-
ten predicted by numerical models. A possible explanation for this discrepancy is that the physical diffu-
sion/dissipation processes neglected in numerical models could provide a strong damping, as suggested by
equation (31). Actually, even in numerical models the level of transit-time oscillations is very dependent upon
the amount of numerical diffusion, and for this reason these oscillations are not weak [11] or totally absent [12]
in models using first-order accurate schemes. The (incorrect) prediction of transit-time oscillations is thus
paradoxically the consequence of a high numerical accuracy.

The damping of transit-time oscillations can be achieved by introducing a slight amount of artificial diffu-
sion in the numerical scheme, for instance by solving an equation system similar to (29, 30). In order to add
as little artificial diffusion as possible, it is preferable to adaptξ to the potential magnitude of the growth rate.
Since the growth rate is a function of the Mach number, the empirical expression

ξ = LdCs

(
1 +M2

i

)
(38)

was used in the fluid model, and seems to constitute a sensible and reasonably universal weight for most cases.
A diffusion lengthLd = 0.1 − 0.2 mm was found to be in general sufficient to fully suppress transit-time
oscillations. For such low values ofLd, no sensible impact was observed on either the stationary profiles or
on the low-frequency oscillations (this was verified by comparing the solution obtained withLd = L∗d and
Ld = 2L∗d, whereL∗d is the critical value for which transit-time oscillations are fully damped).

In future developments, we shall hopefully propose a more optimal expression of the artificial viscosity
where the ionization degree is taken into account.
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6 Conclusion

A new theory of transit-time oscillations has been proposed which seems to properly explain the location
of the unstable regions observed in a fluid model of Hall thrusters. Two potentially unstable regions were
identified, close to the anode and in the acceleration zone.

Several of the predicted characteristics seem to confirm the presumed relationship between the numerical
transit-time instability and the transit-time instability found in experiments, namely:

• the instability is more probable at high ionization degrees,
• the frequency roughly scales with the acoustic propagation velocity (Vi ± Cs),
• the behavior of the growth at high frequencies predicts a wide frequency spectrum.

Besides, the high likelihood for unstable modes in numerical models was attributed to the probable neglect
of physical small-scale diffusion processes. Acknowledging that transit-time oscillations are not observed in
modern Hall thrusters, the introduction of artificial diffusion was proposed as an efficient way to damp unstable
modes.
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