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N o m e n c l a t u r e  

/~ magnetic induction 
c ~ molecular velocity 
d diameter 

electric field 
F external force 
f velocity distribution function 
g relative velocity 
3 current density 
m particle mass 
n particle density 
p pressure 
T temperature 
t time 

thermal velocity 
v ~ mass average velocity 
S coordinate 
G r e e k  S y m b o l s  
~0 electric permitt ivity 
#0 magnetic permeability 

viscosity coefficient 
p charge density 
p density 
cr collision cross section 
~ solid angle 
C o n s t a n t s  
c speed of light 
k Boltzmann's constant 
S u b s c r i p t s  
coll Collisions 
i, j species indices 
r reduced 
re f reference 
T total 
A b b r e v i a t i o n s  
DSMC Direct Simulation Monte  Carlo 
ESA 
HLRS 
IAG 
IHM 
IMPD 
IRS 
PIC 
P P T  

European Space Agency 
HSchst leistungsrechenzentrum Stut tgar t  
Insti tut  fiir Aerodynamik und Gasdynamik 
Insti tut  fiir Hochleistungsimpuls und Mikrowellentechnik 
instationary magnetoplasma dynamic 
Insti tut  fiir Raumfahrtsysterne 
Part icle in Cell 
Pulsed Plasma Thruster  
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I. I n t r o d u c t i o n  

W HILE PIC (Particle in Cell) methods allow the modeling of charged particle movement within elec- 
tromagnetic fields, they do not usually take into account interactions between particles, i.e. collisions 

leading to energy and momentmn exchange as well as to chemical reactions. Since these interactions can 
play an important  role for the thrust  and losses of electric propulsion systems, it is necessary to model them 
as well, using e.g. DSMC (Direct Simulation Monte Carlo) techniques. A cooperation between IRS (Institute 
of Space Systems, University of Stuttgart) ,  IAG (Institute for Aerodynamics and Gas Dynamics, University 
of Stuttgart) ,  HLRS (High Performance Computing Center Stuttgart)  and IHM (Institute for Pulsed Power 
and Microwave Technology, Research Center Karlsruhe) has been formed to develop a hybrid PIC/DSMC 
scheme. 

The main application for this scheme is the modeling of an instationary magnetoplasmadynamic (IMPD) 
thruster,  also known as pulsed plasma thruster (PPT).  Within the small satellite program of the IRS, a 
lunar satellite is under development. The satellite will be equipped with two electric propulsion systems. 
The main propulsion system will consist of a cluster of IMPD thrusters. The duration of a single pulse is of 
the order of 8 #s. The current of about 30 kA allows an acceleration of the propellant mass bit leading to 
exhaust velocities of about 12 kin/s, i.e. a specific impulse of approximately 1200 s. 1 Due to the instationary 
operation and the degree of rarefaction, no continuous parti t ion function of the propelling plasma is to be 
expected. 

A second application is the modeling of a combined electrodynamic te ther /e lec t r ic  propulsion (CETEP) 
system proposed by ESA? The thrust  generated by an electrodynamic tether is limited by its current 
collection ability. The PMG (Plasma Motor Generator) aboard the TSS-1R (Tethered Satellite System), for 
example, was able to reach 0.3 A in flight under the best ionospheric conditions? For a coupled system, 
the tether links an ion thruster  and its neutralizer. The electrons generated in the ion thruster  are driven 
through the tether and released by the neutralizer. Thereby, the tether current is only limited by the number 
of electrons produced by the ion engine, resulting in a possible current of the order of 2-3 A (depending on 
the ion thruster  used) and therefore a higher tether thrust,  which is additionally amended by the thrust  of 
the ion engine itself. 

In order to model the physics, the PIC scheme developed by IHM 4,5 will be extended by models for in- 
traspecies charged particle collisions and intermolecular reactions. Within the PIC code, the Vlasov-Maxwell 
equations are solved in order to describe the interaction between charged particles and electromagnetic fields. 
To model the exchange of momentum and energy as well as chemical reactions without consideration of 
Lorentz forces, a DSMC method based on the "LasVegas" code developed at IRS ~ is used. A newly devel- 
oped Fokker-Planck solver using PIC techniques is used to model collision relaxation of electrons in velocity 
space. The integration of these three models is expected to allow for an accurate prediction of the thrust  
of electric space propulsion systems operating far from continuum. Additionally, the necessity of a three 
dimensional and time accurate description and complex geometries requires optimization and parallelization 
of the code in order to efficiently use high performance computers. 

In Section II, a description of the problem - finding a general solution to the Boltzmann equation - and 
the simplifications used are given. In Sections III, IV, and V, an overview of the methods used to model the 
various parts of the Boltzmann equation is given. In Section VI, conceptual aspects are discussed to manage 
the interplay of the three different models. First results are presented in Section VII and, finally, a short 
smnmary aald an outlook are given in Section VIII. 

II. B o l t z m a n n  E q u a t i o n  

From the microscopic point of view, a particle without internal degrees of freedom caal be characterized 
by its mass and velocity. Combining all particles with equal mass rn~ within a volume element dxl dx2 dma 
defines a phase space distribution function 

k (~, ~,  t), (1) 
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where c~ is the particle velocity and t is the time. 
necessary, which can be found by evaluation of 

p m ./" f d ~  

T 3nkm fv'fa': 

where the thermal velocity ~ is defined by 

In many cases, mean macroscopic gas properties are 

for the density, (2) 

for the velocity, (3) 

for the temperature a1:d (4) 

for the pressure, (5) 

~ - .d, (6) 

and n denotes the number density, which is given by n f f dc'. The most general equation describing the 
change of the distribution function is the Boltzmann equation 

O f,~ 
o-7 \ (7) 

which describes the change of the distribution function in time and phase space as a result of external 
forces a1:d particle collisions. The term on the right-hand side of Eq. (7) represents the Boltzmann collision 
integral 7 

,, J.o,, s i.,l s,i ,l] (.I 
3 

which reflects the rate of change with respect to time of f,~ due to collisions. Here, the index j runs over all 
;<scattering" populations, j ~ - c+j is the relative velocity, <r~j 07) is the differential scattering cross section 
between the particles of the species i and j and the element of solid angle dO is given by dO sin 0 dO d@. 
Moreover, the prime refers to the value of a quantity after a collision and unprimed denotes the values before 
the collision. From the mathematical point of view, the Boltzmann equation is a very complicated integro- 
differential equation which can be used to determine the velocity distribution function. Up to now, a general 
solution of the Boltzmann equation to decribe macroscopic problems is not possible. Therefore, several 
simplifications are necessary to compute solutions for the Boltzmann equation. In the case of highly non- 
neutral plasmas, the right-hand side of the Boltzmann equation (7) can be neglected. Then, the collective 
behavior of such an electrically non-neutral ensemble of charged particles is described by the Vlasov and 
Maxwell equations. 4 The corresponding numerical approach is known as the Maxwell-Lorentz model, which 
is based on Particle-in-Cell techniques. A very brief review of this model is given in section III. However, 
in order to model the physics of a PPT, collisions between particles of the same species as well as between 
different species have to be taken into account. An appropriate, lowest order approximation of the collision 
integral (8) leads to the Fokker-Planck model, s This approach is suitable for modeling intraspecies charged 
particle collisions and will be introduced in Section IV. A further approximation of the collision integral 
that  allows the inclusion of interspecies reactions is presented in Section V. Therein, the underlying DSMC 
method is applied to model ionization and recombination processes. 

III. Maxwel l 's  Equat ions  

According to the law of dynamics for charged particles, the external force ~ in equation (7) is determined 
by the Lorentz force and depends on the velocity @, the electric field E, and the magnetic induction B: 

q[/~(S, t) ÷ d~ x/~(S, t)]. (9) 
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With the Lorentz force for charged particles (9), the Boltzmann equation (7) can be written in the collisionless 
kinetic formulation for the distribution function fi  of the charged particles, the so called Vlasov equation 

ok 
o-Z + e~. v~f~ + q--t(£(~,t) + e~ × ~(~, t)). vj~ o. 

~ t i  
(10) 

In the terminology of hyperbolic partial differential equations, the general solution of (10) is given by its 
characteristics, the Lorentz equations 

d~ 
c~, (11) 

dt 

d#.~,~ ~ .  (12) 
dt 

The relativistic momentum is given by j,~,~ m~Tc~ with the Lorentz factor 7 2 1 + (#,~,~/(m~cL) 2 where 
CL denotes the speed of light. 

The difficulties insolving the Lorentz equations arise from the fact that  the electric field /~ and the 
magnetic induction B are not given explicitly. They have to be calculated at each time step in a self- 
consistent manner 9 from the full set of Maxwells equations 

Ot go' 

o~ 
- - +  v x t ?  0, 
Ot 

V . £  P 
gO 

V-/~ 0, 

Amp~re's law, (13) 

Faraday's law of induction, (14) 

Gauss' law, (15) 

absence of magnetic monopoles, (16) 

where the electric permittivity e0 and magnetic permeability #0 are related to the speed of light e L according 
to eo#OCL 2 1. For given charge and current densities p and f,  the Maxwell equations describes the temporal 
and spatial evolution of the electric field /~ and the magnetic induction /~. With an integration over the 
entire range of momentmn j,~,~, the self consistent parts of the charge and current density p, J are obtained 
from 1° 

~ q ~ [  fi(S,#,t)d3p, (17) P 
J 

- 

3 q~ ~ f i (S ,  ig, t)dap. (18) 
i 

Up to now the description is exact in the sense that no nmnerical approximations are made. 
For the numerical realization of the Maxwell-Lorentz system, the Particle-In-Cell method is applied, u 

In the discrete case, the charge and current density can be obtained from 

p* ~ q~5[~ - <] (19) 
i 

2* ~ q~<<~- <1, (20) 
i 

where 6 denotes the usual Dirac function. For each grid node, all particles in the surrounded cells are 
considered. In order to determine the contribution of the particles, shape-functions are used to calculate p 
and f at the grid nodes. With these charge and current densities the new electromagnetic fields are computed 
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at these nodes and then interpolated to the local particle postions. 
equations have to be solved at each time step. 

A direct consequence of the charge conservation equation 

To get these field values, the Maxwell 

Op 
0-7 + v . ] o. (21) 

and of the fact the divergence of the curl for any differentiable vector field being zero is that  the divergence 
constraints (16) and (15) are satisfied for all times, if the initial values satisfy these relations. In this case, 
it would be sufficient to solve the hyperbolic evolution equations (13) and (14) only. 

Unfortunately, in the simulation numerical errors may occur: The divergence of a curl may be zero 
up to some error terms only and interpolation errors in the particle t reatment may arise. This leads to 
small errors being introduced at each time step. If only the hyperbolic evolution equations are numerically 
solved, then these errors may increase and strongly falsify the solution. For a self-consistent movement of 
charged particles, the Gauss law (15) and the statement about the absence of magnetic monopoles (16) 
have to be coupled with Amp~re's and Faraday's law. In the Generalised Langrange Multiplier (GLM) 
approach two additional variables O(S, t) and qJ(S, t) are introduced into the Maxwell equations to couple 
the evolution equations for the electromagnetic fields (13) and (14) with their elliptical constraints (15) and 
(16), respectively. The coupling terms may be chosen such that  a purely hyperbolic system can be formed. 12 
If the errors are Zero, then it coincides with the original Maxwell equations. The Purely Hyperbolic Maxwell 
(PHM) equations system reads as 

- -  - c2V x / ~ +  xc2VO 3 , (22) 
G0 

v × + o, (23) 

1 00  p 
V-/~ + --, (24) 

X Ot Go 

v .  g + 7d  ot o, (25) 

Ot 

o2 - - +  
Ot 

where the dimensionless positive parameters X and 7 represent the t ransportat ion coefficients for the local 
errors • and qJ. These new variables O(S, t) and qJ(S, t) define two additional degrees of freedom and couple 
the divergence conditions (15), (16) to the evolution equation (13), (14). 

This correction technique ensures that  the divergence errors arising from the div curl as well as from 
the charge conservation violation within an electromagnetic PIC computation cannot increase and falsify 
the numerical simulation results. A decisive advantage of the proposed FV approach is that  the explicit 
numerical methods used for the Maxwell equations in the time domain can be combined with a hyperbolic 
divergence correction in a straightforward manner, yielding a very efficient and highly flexible Maxwell solver 
module for PIC applications on unstructered grids and for parallel computing. 

I V .  A D i f f u s i o n  M o d e l  f o r  C h a r g e d  P a r t i c l e s  I n t e r a c t i o n  i n  P I C  S i m u l a t i o n  

In the following, we consider a plasma where electron-electron collisions - abbreviated by (e,e) - play an 
important  role. We assume that  the electron density is of the order of 10 is m a, which means that  the (e,e)- 
collision frequency exceeds the one of electron-neutral collisons. It is obvious that  in such plasmas the shape of 
the electron energy distribution function (EEDF) is mainly determined by the (e,e)-interaetions. In the case 
where the energy input into the plasma goes primarily into the thermal part of the EEDF, the high-energy 
tail is mainly populated by energy up-scattering caused by (e,e)-eollisions. Furthermore, these collisions 
always drive the EEDF towards a Maxwellian distribution. However, in this situation a competition with 
inelastic electron-neutral reactions occurs, which depletes the high-energy tail. Another competition may be 
relevant in bounded plasmas, since high-energy electrons can escape to the walls. Energetic considerations 
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indicate that  the high-energy tail controls reactions like atomic excitation and ionization, and to some extent 
the plasma chemistry. Clearly, since the EEDF determines many properties of the plasma, it is essential to 
model (e,e)-collisions as realistic as possible. In the following, we describe the formulation that  allows to 
include (e,e)-collisions into a PIC framework in a natural way. 

A. Governing Equations 

A well-established and for our purposes suitable mathematical model for (e,e)-collisions is given by the 
Fokker-Planck (FP) equation 

-~  C' oll Ocj 20cjOc~ 

This model describes the evolution of the electron distribution function f f~ (aT, c', t) as a result of small- 
angle scattering of Coulomb point particles, and represents the lowest order approximation of the Boltzmann 
collision integral, s,13'14 The key quantities to determine the coefficients of dynaanical friction Sj(aT, c', t) 
O~/Ocj and diffusion 2)j~(S, ~, t) ~ 02G/OcjOc~ are the Rosenbluth potentials 15 given by 

and 

. f  f (S,  ~aT, t ) 
2 IJl d3w 

Cx3 

(27) 

O O  

t) i IJl d3w,  (28) 
O O  

where j c ' -  ~a7 is the difference between the velocity of the scattered-off electrons and the velocity of 
the electrons that  serve as scatterer. Clearly, the friction force f-  and the diffusion tensor D themselves 
depend on the velocity c', hence, the FP model generally is a complicated non-linear problem that  has to be 
solved numerically in an appropriate - namely, self-consistent - manner. Note that  the appearence of the 
FP equation reveals that  the (e,e)-collisions are modeled as a diffusion process that  describes the short-time 
behavior of the considered system. 16,.7 

The FP equation (26) for the evolution of f is equivalent to the stochastical differential equation (SDE) in 
the It6 sense 16,18 

dC(t) 5f(C, t) dt + S(C, t) dl~(t) , (29) 

where l~(t) represents the three-dimensional Wiener process and the matrix S E ~]Pv 3 × 3  is related to the dif- 
fusion matrix according to D S S T. As indicated, both quantities 5 ~ and S now depend on the stochastical 
variable (~ (~(t), which will be identified later as the velocity of a single (macro) electron. Hence, the use 
of the Langevin-type SDE (29) fits in a remarkable way into the standard PIC approach, 4 which is one basic 
concept of the present code development. 

It is well known that  the assumption of an isotropic but non-Mmxwellian velocity distribution of the scatterer 
implies an enormous reduction of the problem since the diffusion and friction coefficients can be written in 
terms of one-dimensional quadratures. 15,19,2° In order to be free of any model (assumption), we have to 
start  from the Rosenbluth potentials (27) and (28) and apply Fourier transformation techniques to compute 
the integrals in velocity space. After some standard manipulations, 21 we obtain the results 

[k2  j 

[ k 4 j '  

(30) 

(31) 

and 
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where the identity V~g 2/g has been used to obtain the second relation and F 1 denotes the inverse 
Fourier transformation of the arguments in the braces. Clearly, the arguments of (30) reveal the convolution 
character of expression (27), which means that  we get in ]]-space the product of the Fourier transform 

f(]]) (2~r) 3/2 / dace ~;ef(c~ and 1/k 2, which is the Fourier transformation of the "Coulomb potential" 
O O  

1/g. In essence, the main advantage of the Fourier approach is that  we obtain a first principle, fully self- 
consistent determination of the deterministic friction and stochastic diffusion arising in (26) and (29) since 
no specific model assumptions are necessary to compute the Rosenbluth potentials. 

B. Numerical Framework 

For the sake of clearness, we consider a single spatial grid cell, in which a sufficiently large number of particles 
is located, and assume that  a computational Cartesian mesh in velocity space is associated with this local 
grid zone. 
Assignment. From the actual location of the plasma particles in mesh-free velocity space, the distribution 
function f ( ~  is constructed on the Cartesian velocity mesh by applying linear assignment techniques similar 
to those discussed in. 11 
Rosenbluth Solver. Afterwards, Fast Fourier Transformation (FFT) methods 22,2s are applied to compute 

the Fourier transform f(]]) of the distribution function f(c)  and the subsequent convolution of f(]]) with 
the transform of 1/g. Finally, an inverse transformation yields the grid-based Rosenbluth potentials (30) 
and (31), from which the friction force and the diffusion matrix can be determined. In order to avoid 
"computational noise", often associated with differentiation, it seems to be advantageous to directly compute 
the derivatives of the potentials in the F F T  context. 
Interpolation. The "Langevin forces", which are the deterministic friction and the stochastic diffusion, have 
to be computed at the position of each particle in grid-free velocity space. For that,  linear interpolation 
techniques are used, which can be found, for instance, in reference, n 
Langevin Solver'. Under the action of the velocity-dependent Langevin forces, each particle is moved in 
velocity space according to the SDE (29), where appropriate numerical methods are required. For our 
purposes, we use strong approximations is of equation (29). For instance, the Euler scheme 24 

3 

i = 1  

is applied, which converges strongly with order 7 1/2. In the latter equation, J~ S - e/~, with the unit 
vector s'~, and the Wiener increment AW¢~ is defined according to AW¢~ ,/A-~r/~, where At is the time 
step size and r/.i ~ 2V(0, 1) denotes a Ganssian distributed random number with mean # 0 and variance 
~r 2 1. Note, that  the order of the Euler scheme can easily be improved by adding an additional term of 
the Itd-Taylor expansion, which leads to an explicit order 7 1 scheme proposed by Milstein. 24 This step 
closes the self-consistent determination cycles, which have to be run through at each time step and for each 
spatial grid cell. 

V. M o d e l i n g  o f  Shor t  R a n g e  P a r t i c l e  I n t e r a c t i o n s  

The losses of a thruster using purely electromagnetic acceleration forces can be estimated considering 
distribution and density of the neutral particles. Since no assumptions can be made due to very low plasma 
densities and short pulse durations, every single neutral particle has to be tracked in phase space. Moreover, 
elastic and inelastic interactions have to be considered in order to obtain a physically reasonable composition 
of the plasma. This is done by applying a DSMC method, which was developed in the 1960s by Bird and 
became the standard particle approach for simulations of reactive and non-reactive rarefied gases. 25 In such 
gases, the long range particle interaction can be neglected, thus simplifying the collision modeling to binary 
collisions. The DSMC method approximates the solution of the full non-linear Boltzmann equation (7) for 
each species, which is formulated for binary collisions as well. 
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Considering particle collisions on a microscopic level, one must define the intermolecular potential model 
in order to find an appropriate approximation for cr~j, which is in general a function of g and the scattering 
angle X. The simplest approximation is given by the rigid sphere potential function, see Fig. 1. Here, the 
potential is cc for r < d and 0 for r > d, whereas the collision diameter is given by d (d~ + dj)/2.  A 
collision occurs, when the orthogonal distance between both particles b is smaller than d, as shown in Fig. 1. 
This model leads to isotropic particle scattering and the total collision cross section 

47r 

cr T / c r d ~  ~rd 2, 

0 

(33) 

which does not depend on the relative velocity g. However, this non-realistic scattering law and the missing 
influence of the relative velocity on cr put the advantage of the easy computable collision mechanics of the 
HS model into perspective. 

The accuracy can be increased by applying the inverse power law potential function which is depicted 
in Fig. 1. The problem in principle, that  arises, is that  its total cross section may become infinite. Thus, a 
clear definition of the collision frequency and mean free path is difficult. One way to address this problem is 
to use the variable hard sphere (VHS) model. Hereby, the isotropic scattering of the HS model is retained, 
but the molecular diameter, which is a function of the temperature,  is allowed to vary as a function of g. 

Rigit sphere 

wer law 

I. 

d Particle distance 

g 
~9 

Figure 1: Pictorial representation of interaction potential functions (left) and HS collision mechanic (right) 

The effective cross section of real molecules decreases as g increases. The rate of decrease is directly 
related to the change of viscosity with temperature,  namely # ~ T ~+1/2. Thus, the resulting collision cross 
section is 

 T(g) 2 wdref ~tr9""" ~ , (34) 

where dref is a reference diameter at a particular reference temperature T,~f, m~ is the reduced mass, k is 
Boltzmann's constant and ~ is the index of the viscosity-temperature power law. For ~ 0, the HS model 
is obtained, for ~ 1/2, Maxwellian particles are simulated. 

The VHS model is relatively simple and yields more accurate results than the HS model. Thus, it became 
the most common cross section model for DSMC simulations and is used in the particle approach presented 
here. 

Working principle of DSMC 

The employed grid structure divides the domain into cells. This is necessary for the splitting of molecular 
collisions processes in physical space, thus defining the set of potential collision partners for each cell, and 
for the calculation of macroscopic properties by particle sampling. Similar to PIC, time is advanced by small 
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steps. The discretization criteria differ from those in PIC. Namely, the cell size and time step have to be 
much smaller than the molecular mean free path and mean free time in the gas, respectively. This results 
from the uncoupling of particle motions and collisions. 

The evolution of the particle system during one time step At  proceeds in three steps: 
Step 1: After particle localization, reflective gas-surface-interactions are treated by applying one of the 
following models: The Maxwell model combines specular with diffusive reflection and partial energy accom- 
modation. The Hurlbut-Sherman-Nocilla (HSN) model superimposes the maxwellian reemission with a drift 
velocity, but does not satisfy detailed balancing. The Cercignani-Lampis (CL) model is the most advanced 
model which satisfies detailed balancing. 
Step 2: Collisions within each cell are calculated in a probabilistic manner. Therefore, the No-Time-Counter 
(NTC) method is used. Potential collision pairs are sampled by the Natural-Sample-Size (NSS) technique. 
The random number generator RAN2 is used in order to make the final collision pair selection. For the 
dissociation reaction the Total Collision Energy (TCE) and Vibrationally-Favored-Dissociation (VFD) mod- 
els can be applied. For the description of the vibrational modes the Simple Harmonic Oscillator (SHO) as 
well as the Truncated SHO (TSHO) model can be chosen. The Larsen-Borgnakke model is used in order to 
distribute the postcollisional energy to inner degrees of freedom. In principle, only particle velocities, inner 
energies and/or  species type may change, whereas spatial positions remain unchanged. In our approach the 
scale factor describing the number of real particles in a macroparticle is constant and equal for all particles. 
Step 3: The particles are advanced using the simple Newtonian mechanics. 

The DSMC code used here is based on LasVegas, a DSMC code written by M. Laux during the 1990s 
at the IRS. 6 It was developed in order to simulate rarefied gas flows around reentering bodies in earth 
atmosphere and allows the calculation of relaxation, chemical reactions and gas-surface-interactions of mono- 
and diatomic gases. 

Currently, the chemical models are extended by ionization and the reversal recombination processes, 
which are necessary for a complete simulation of the performance of an IMPD thruster. 

V I .  C o u p l i n g  C o n c e p t  

An important  part of the project is the integration of the four aforementioned building blocks - that  
are a) the Mmxwell solver, b) the Lorentz solver, c) the Fokker-Planck part,  and d) the DSMC part  - into 
one code. Par t  a) is a Finite Volume scheme, based on an (unstructured) computational grid. Parts b - 
d are particle based systems involving the grid only to determine possibly interacting particles. Therefore, 
inter- and extrapolation techniques form one main constituent of the coupling. The other are localization 
procedures to determine the position of a particle within the computational grid. Figure 2 shows the coupled 
iteration of one tirnestep. 

Assignment 
(X V)p~ ~" (P J )node 

' @ Loss / Gain of Part.] 
at boundaries J 

MC Reactions ] 
birth/dead of part.J 

Maxwell Solver ~.. 
(P J )no~e (E a)node 

Interpolation 
(EB)no~e (EB)pr t 

Lorentz 
Fp --(u x)p. 

.~_.~Fokker Planck (SDE)] 
(U X)pr t 

Figure 2: Coupling Circle for the integrated code 
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Given a particle distribution within the computational domain, the charge and current densities define 
the electromagnetic eigenfields. Therefore, their values at the particle positions have to be assigned to node 
or cell values for the Maxwell solver, where they act as source terms. After completing the Maxwell step, 
the /~- and /?-fields are known as cell averages in the Finite Volume context. They have to be evaluated 
at the particle positions to determine the Lorentz forces acting on the charged particles. Hence, the mean 
values have to be extrapolated from grid positions to particle positions with the desired order of accuracy. 
The Lorentz solver then determines the acceleration of the particles. Performing these steps forms the 
Particle-In-Cell framework. 

Next, Fokker-Planck and DSMC steps determine additional velocity changes of the charged as well as 
uncharged particles due to interactions, i.e. collisions and chemical reactions, as described in Sections IV - 
V. These steps, as well as the Lorentz solver, act on the same particle distribution, i.e. the distribution at 
the beginning of the time step, meaning that  the different steps do not know about changes introduced by 
the previous ones. Each step changes the velocity of the particles without actually moving them. 

The movement of the particles is done in a separate pushing step. Within this step, the particles have to 
be localized on the grid to assign to them the grid cell they are in and/or  the nearest barycenters or Gaussian 
integration points. This information is also necessary for the application of correct boundary conditions. 

Localization of particles is done in two different ways: If the previous position of the particle is known, 
the cross-products of the particle velocity vector with particle-to-node vectors are calculated to determine 
the side face through which the particle has left. Then, the corresponding neighboring cell is checked in the 
same way. This is an efficient procedure, suitable for vectorization and parallelization. 

Newly emitted particles have to be localized differently, since no knowledge from a previous time step 
is available. In this case, the unstructured computational grid is overlayed by a cartesian-equidistant one. 
There, the search is done by dividing the position of the particle by the grid size Ax, yielding the correct 
structured cell for this particle. Then, only the unstructured cells contained in this structured cell have to 
be checked, until the correct one is found. 

The particle push, including the localization of the particles within the grid as well as the application of 
boundary conditions, is the closing step of each time step, leading to a new particle distribution used in the 
following time step. 

The numerical and implementational requirements of the four building blocks differ strongly, therefore the 
parallelization strategy is not self-evident. It has been decided to parallelize over the computational domain, 
i.e. to apply a domain decomposition method. Also, parallelization over the particles was considered. For the 
Lorentz solver, this would be possible, since all particles move independently. The movement is determined 
only by electric and magnetic forces acting on them. However, the Fokker-Planck and the DSMC step 
need information about neighboring particles to determine the interaction probabilities. For this, pairs of 
nearby particles have to be determined by random processes. Therefore, the particles cannot be considered 
independent of each other and it has to be guaranteed that  these particles remain on the same processor. 
Thus, a grid based domain decomposition containing not only the cell values but also the information about 
all particles located in these cells is chosen as parallelization strategy. 

In order to reduce the computational time for particle localizations, especially of the newly emitted parti- 
cles, all geometrical information about the unstructured-structured cell link is calculated in an initialization 
step prior to the time iteration procedure. Here, mapping matrices of structured grid cells and the contained 
unstructured cells have to be generated. These matrices are sorted in order to reduce the bandwidth and to 
obtain long loops for better  optimization. 

VII.  First  R e s u l t s  

The different models described in Sections III to VI have been combined into one numerical code and 
verification tests are being conducted. In the following, first results of these tests are presented. 

The PIC part  consists of the Maxwell and Lorentz solver and the particle t reatment  including movement, 
boundary conditions and localization. To test its functioning, electrons and protons are continuously injected 
into a square area from the left and the right side with a velocity of 10 3 m / s  and l0 s m/s,  respectively. 

Additionally, an external electric field of 10 ~ V / m  is applied in x-direction, thereby accelerating the par- 
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Figure 3: Grid used for the calculation of the veri- 
fication test shown in Fig. 4. 
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Figure 4: Particle distribution for a PIC verification 
test after 10 ns. Every 20 th particle is displayed. 

ticles. As can be seen in Fig. 4, the electrons (black) are accelerated towards the center of the proton (grey) 
"bean". This behavior is expected due to the lower mass and therefore higher acceleration of the electrons. 
The cause for the striped appearance of the electrons is the interpolation, which - at the moment - assigns 
the same electric and magnetic field to all particles within a given grid cell. 

In order to assess the applied model for (e,e)-collisions, we consider the situation where the distribution 
function of the scatterer is isotropic: f( '~) f ( w ) ,  w I'll. Then, the Rosenbluth potentials only depend 
on the modulus of the speed, and may be computed by one-dimensional quadratures or the outlined Fourier 
approach, which is realized in the Rosenbluth solver. Explicitly, the resulting coefficients of friction S f  (c) 
and diffusion D±(c)  and DII (c) are analytically given)  3 Transforming the FP equation (26) into spherical 
coordinates, s one obtains the corresponding FP equation 2° for the distribution function g(c, t) c 2 f (c ,  t) of 
the isotropic case and from this the equivalent Langevin-type SDE 

for the scattered electrons, which is coded in the Langevin solver. Two numerical experiments based on the 
isotropic model are presented in the following. 
Experiment  1: This numerical experiment is designed for the assessment of the applied approximation path 
and allows to identify possible insufficiencis as well as to suggest further improvements. It is well-known 
that  one solution of the FP equation is the Maxwell distribution function 13 

e 2 
2 (36) 

g0(~) ~ . ~ ,  ~ ~ " t , , '  

Initializing the numerical experiment according to the Maxwellian (36) with vth 5, we expect that  the 
temporal  evolution of the distribution function obtained from the simulation should stay very close to the 
Maxwellian shape. Fig. 5 shows the theoretical curve (full line) together with the solution (open squares) 
obtained with 256 velocity grid points after 2- 104 iteration cycles. The numerical solution fits very well with 
the analytical one especially in the high-energy tail whose resolution is often critical because of the low number 
of particles. However, some fluctuations are observed around the maximum value of the distribution function. 
In order to analize this observation, the time history of the mean (upper plot) and the variance (lower plot) 
is recorded in Fig. 6. These plots clearly reveal that  the sample mean increase slightly with time while the 
variance decays. This behavior represents a typical fingerprint for a finite-sample noise-induced instabili ty/6 
Especially, the noise-induced cooling (the variance decreases) is significant for systems which spend much 
time in equilibrium as in our case. A simple remedy to eliminate the fluctuations is the renormalization 
method introduced by Lemons and co-workers, 26 which will improve our proposed intraspecies collision 
approach. 
Experiment  2: The initial data for this experiment are given by the isotropic, but non-Maxwellian velocity 
distribution 

1 
[ ( 9 ( c -  cl) - ( 9 ( c - c 2 ) J  ; cl < c2 , (37) go(~) ~2-~1 
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Figure 5: Comparison between the exact solution 
(full line) and the simulation result (open squares) 
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Figure 6: Time history of the sample mean value 
(upper) and variance (lower plot) for experiment 1. 

where O is the Heaviside step function and cl 4 and c2 5. This profile (dashed line) is seen in Fig. 
7 together with four further velocity distributions recorded at the (dimensionless) times t 1 (full line), 
t 5 (dashed-dotted line), t 10 (line with squares) and t 40 (line with circles). First, we observe a 
drastic change of the shape of the velocity distribution between t 0 and t 5. Afterwards, the change 
is less pronounced and a Maxwellian is discernible. At t 40, the final Maxwellian distribution is reached, 
and further deviations from this shape are very small. Besides the shape of the distribution function, other 
quantities seemed to be helpful to study the collisional relaxation of a non-Maxwellian to a Maxwellian 
distribution. For this, the temporal evolution of the mean value (line with squares) and the variance (line 
with gradients) of the velocity distribution g(c, t) as well as the quantity H(t) - f dc ln[g(c, t)] g(c, t) (line 
with circles) are presented in Fig. 8. Especially the latter quantity indicates that the obtained solution is 
close to the stationary solution, since only a small increase of H(t) is observed in the long range time limit. 
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Figure 7: Temporal evolution of an initially 
isotropic but non-Maxwellian velocity distribution. 

Figure 8: Mean value < c > (upper), variance cr 2 
(middle) and H(t) (lower curve) as a function of time 
for the velocity distribution g(c, t). 
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VIII. Summary and Outlook 

In cooperation between IRS, IAG, IHM and HLRS, a new numerical scheme is under development, 
intended to solve the Boltzmann equation for chemically reacting, non-continuum plasma flows, taking 
electromagnetic forces into account. In order to simulate instationary magnetoplasmadynamic thrusters and 
the CETEP system proposed by ESA, the requirements of three dimensional discretization and time accuracy 
complete the challenging task. Since a direct simulation of all atoms present in a macroscopic device like an 
electric propulsion system is far from being possible, statistical approaches are being used. 

In order to simulate the coupling between electric and magnetic fields and charged particles, methods 
known from PIC schemes are used. The coupling between the charged particles itself has not been addressed 
in the context of PIC schemes so far. Therefore, a new model based on the Fokker-Plallck equation is under 
development in order to describe intraspecies charged particle collisions. Inelastic collisions and short range 
interactions, i.e. collisions with neutral particles, leading to energy exchange, momentum exchange and to 
chemical reactions, are modeled using DSMC techniques. 

Currently, the different models have been combined into one numerical code and verification testing of 
the different modeling approaches is in progress. Concurrently, data and operation structures are revised in 
order to allow for an efficient processing of the code on parallel vector high-performallce computers. 

Preliminary results of the verification tests have been shown. After successful completion of the veri- 
fication tests of the different models, more sophisticated verification tests for the coupling of all modules 
are planned for the near future. Subsequent improvement of the modeling and optimization of most of the 
modules in order to improve vector performallce and to reduce computational time will be ongoing. 
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