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Abstract:This paper is devoted to the development of theoretical model of electron-ion 
instability in Hall thruster (HT) for the frequency range of the order of lower-hybrid 
frequency which has a magnitude of f≈1 MHz. An analysis was carried out within the frames 
of two-fluid magnetic hydrodynamics. Electron inertia is taken into account in the first 
order of the ratio of oscillations frequency to electron cyclotron frequency.  It is shown that 
making some additional assumptions it is possible to reduce the MHD equations to one 
second-order equation with variable coefficients. This equation is similar to Rayleigh’s 
equation but there is a significant difference – additional resonant factor resulting from the 
disturbed ion motion. The boundary eigenvalue problem for this equation is solved using 
mainly numerical methods. It is shown that for the electric field profiles in acceleration 
channel typical for present-day HT and for typical channel dimensions a strong large-scale 
instability close to aperiodic arises. The “driving force” of this instability is the electron drift 
velocity nonuniformity. Since both electrons and ions are involved in low-hybrid instability it 
can cause the enhanced electron transfer in  channel. The possible means of an experimental 
identification of the instability are also considered in the paper.  

Nomenclature 
B =  induction of magnetic field  
d =  length of the area filled with the unperturbed electric field 
e = unit positive charge 
E = electric field strength 
k = projection of a wave vector along Y axis 
m              =    azimuthal wave number 
me = electron mass 
M = ion mass 
n =  number density of plasma; longitudinal wave number 
ne                    =    number density of electrons 
ni               =   number density of ions 
u = electron velocity 
Ud = discharge voltage 
V = ion velocity  
β               =   parameter defined by (19) 
γ               =    growth rate of instability 
ε0 =  vacuum dielectric constant 
Φ =  perturbation of potential 
ωe = electron cyclotron frequency 
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ωi = ion cyclotron frequency 
ωLH = lower hybrid frequency 
ωpe = electron Langmuir frequency 
 

I. Introduction 
 

N spite of  almost four decades of Hall Thruster (HT) research and developments its physics is still not fully 
understood. This, first of all, is related to instabilities of plasma in acceleration channel of the thruster.  
Among these, the two-dimensional electron-ion instabilities having an azimuthal component of electric field are 

of special interest because they produce an enhanced transfer of electrons in the acceleration channel. 
A large wavelength of the electron-ion perturbations, comparable, as a rule, with the scale of nonuniformity of the 
fields and plasma parameters in acceleration channel, and the necessity of taking into account plasma boundaries 
significantly complicate the creation of adequate theoretical models of instabilities in HT. Without analyzing in 
detail the existing theoretical models of electron-ion instabilities in HT, we can note their peculiarity. Most of those 
models are based on the small-scale perturbation approximation.  This is simple and rather universal method. 
However, an application of this method to the HT not only contradicts the feature of electron-ion perturbations in the 
acceleration channel, mentioned above but, above all, does not allow revealing the instabilities when these are due to 
certain structure in the distribution of an unperturbed parameter instead of just a growth or decrease of the parameter 
along the channel. In this case an application of numerical methods becomes a necessity. This paper is devoted to 
the studies of plasma stability in HT with respect to an excitation of relatively high-frequency (kxVx0<<ω<<ωe,, 
where xk -projection of a wave vector along a direction of ion acceleration, Vx0 is the unperturbed ion velocity, eω -
electron cyclotron frequency) electron-ion perturbations principally taking into account peculiarities of the profile of 
electric field in the channel. Previously we fulfilled such a program for purely electron perturbations in HT 1. 

II. Theoretical Model of Instability 

A. Basic Assumptions, Equations and Boundary Conditions 
The analysis of the stability of the plasma is carried out in the approximation of two-fluid 

magnetohydrodynamics with cold magnetized electrons and cold non-magnetized ions. We use Cartesian frame with 
X and Z axes directed along applied electric and magnetic field respectively.  The perturbations are assumed to be 
potential and infinitely spread along the magnetic lines (i.e. they are two-dimensional). Dissipative and ionization 
processes are neglected. Besides, it is supposed that  

1) 0 0 0

0 0 0

1 1 1, E B n
E x B x n x

∂ ∂ ∂>>
∂ ∂ ∂

 

where 0 0 0, , ,E B n are  the unperturbed electric field strength, induction of  magnetic field, and number density 
of the electrons (ions),respectively. 

2) The perturbations frequency is high enough that ω>>π Vx0 /d, where d is the length of the area, filled with the 
unperturbed electric field. 

Under these assumptions the linearized MHD equations take the following form 
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where  , x yu u -projections of the perturbations of electron  velocity on axes X and Y, respectively, 

            Φ - perturbation of potential, 
             , x yV V -projections of ion velocity on axes X and Y, respectively, 
             e-unit positive charge, 
             0ε -dielectric constant of vacuum, 

             , e in n -perturbations of number densities of electrons and  ions, respectively,  
  

0
0

0

( )x
y

E xu
B
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The subscript 0 indicates the unperturbed  quantities.  
  
We seek the solution of the linearized set of Eqs. (1) in the form: 

( , , ) ( ) exp( ( ))kx y t x i t kyω= − −F F   (2) 

where F and kF  are the vector of perturbed parameters and vector of functions dependent on x, respectively, 
and k is the projection of the wave along the Yaxis. In the ring channel k can take only the following values: 

mk
r

=  ,     1, 2...m = ± ± -azimuthal wave number.  

We substitute the right side of Eq. (2) instead of its left side to Eqs. (1). In the process, we take into consideration 

the inertia of the electrons only in the first order with respect to
0 01, ,y y

e e e
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. After reordering and taking 

into account the fact that in HT the inequality  
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 is valid  (ωpe-electron Langmuir frequency), Eqs. (1) reduces to the following  second order equation with variable 
coefficients for kΦ : 
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Where LH e iω ω ω= -lower hybrid frequency as inequality (3) is valid, 

            iω -ion cyclotron frequency. 
 
The obtained Eq. 4 describes lower hybrid perturbations in the plasma with shear of transverse velocity2. It differs 
from Rayleigh’s equation, well-known in dynamics of ideal fluid by the presence of the additional resonance factor 

12

21 LHω
ω

−
⎛ ⎞

−⎜ ⎟
⎝ ⎠

. 

The following boundary conditions are used for Eq. (4): 

(0) ( ) 0k k dΦ = Φ =   (5) 

Rayleigh’s equation has been used in our previous paper1 for analysis of the purely electron perturbations. The 
presence of the additional resonance factor due to motion of ions in the perturbations makes solving  the eigenvalue 
problem (4)-(5) significantly more difficult. 
 

B. Approximate Analytical Solution for Model Distribution of Drift Velocity 
We begin the consideration of the problem (4)-(5) with the model sample. Let the drift velocity distribution in 

the acceleration channel be defined by  

2
0 max

1( ) sin
2y yo

xu x u
d

π⎛ ⎞= −⎜ ⎟
⎝ ⎠

  (6) 

Where uy0max –the maximum value of uy0  in the channel. 
This drift velocity distribution does not correspond to its real distribution in HT used today because it 

presupposes the alternating-sign uy0 in the channel, for example, due to the variation of the magnetic field direction. 
But it allows to obtain rather simply the approximate analytical solution of (4)-(5) and to track down in the pure 
form the influence of the “hybrid” resonant multiplier on the plasma stability in the case that the drift velocity 
depends on the coordinate. 

Substituting the expression for uy0 from Eq. (6) to Eq (4) we obtain 
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At the frequencies ω≈ωLH , as the resonance due to the denominator of the first multiplier in  third term of Eq. 
(4) is significant, the value of the frequency ω is about an order of magnitude lower than |kuyomax| . But since uyo 
depends on the coordinate x according to Eq.6 there always exists x in the interval  

0 x d≤ ≤    (8) 

at which the denominator of the third term in Eq.(7) turns to zero (“hydrodynamic” resonance). 
However, since  

0maxLH ykuω ω   (9) 

this resonance will take place at the vanishing values of 2 1sin
2

x
d

π − . But the same term appear as a factor in 

the numerator of the third term in Eq. (7). It means that nearby those two points in the interval (8) where the 
denominator vanishes the numerator will also vanish and the contribution of there regions at the integration of Eq. 

(7) will be insignificant. In the other regions of the interval (8), 2
max

1sin
2yo

yku
d

πω ⎛ ⎞−⎜ ⎟
⎝ ⎠

. Therefore in the 

first approximation ω  in the denominator of the second multiplier of the third term can be omitted. Then Eq.(7) is 
reduced to 

2 2
2

2 2

4 0k
k

d k
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π⎛ ⎞Φ − − Φ =⎜ ⎟
⎝ ⎠

  (10) 

This is the equation with constant coefficients. The characteristic equation corresponding to it is 

2
2 2

2

4 0s k
d
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The solution of he Eq.(8) has the following form 

1 2s x s x
k Ae BeΦ = +   (12) 

where  

2
2
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Using the boundary conditions (5) we obtain 
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(Here n -longitudinal number of mode.) 
or 

2 2 2 2 2

2 2 2 2( 4)LH
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ω π
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  (15) 

At n=1 from the dispersion Eq.(15) it follows that as 

2 2 23k d π<   (16) 

an aperiodic instability appears with a growth rate 

2 2 2

2 2 23 LH
k d
k d

πγ ω
π

+=
−

  (17) 

If k2d2 is not  very close to 3π2 the instability growth rate is about ωLH, which corresponds to our assumption (9). 
In the case that k2d2 is close to 3π2  the condition (9) is violated and the result becomes incorrect.  

The dependence of the instability growth rate on |kd| is shown on Fig. 1. As k2d2>3π2 the instability disappears 
and the stable perturbation with the frequencies shown on the Fig. 1 can exist in plasma.  Also presented on Fig. 1 
are the results of the numerical solution of the eigenvalue problem (4)-(5) for the drift velocity profile (6) using 
Eq.(4) (The method used for numerical solution will shortly be described in the next part). As is seen from Fig. 1, 
the results of the approximate analytic solution at k2d2 not very close to 3π2 coincide well with obtained numerical 
solution. 

In the case of the drift velocity profiles approximating its real distribution in HT acceleration channel, it is 
necessary to take into account both resonant factors in the third term of Eq.(4). In order to do it we use numerical 
solving the problem (4)-(5). 

 

 
  Figure 1. Dependence of parameters of instability for model sample of drift velocity distribution
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C. Numerical Solution of Eigenvalue Problem for Profile Approximating Real Drift Velocity Distribution 
Let us approximate the real electric field distribution in the region where it exists in HT using the following 

function (Fig. 2): 

2
0 max sino

xE E
d

π=                                                                                                                                        (18) 

This approximation of electric field distribution includes two points of inflection. The results of the experimental 
investigations of the electric field in HT demonstrate3-5 that the electric field distribution in the channel has, as a 
rule, inflection points. This conclusion is also correct for the electron drift velocity calculated from the measured 
electric and magnetic fields in the acceleration channel. 

Boundary eigenvalue problem was solved using the shooting method combined with so-called global-converging 
Newton-Ralphson iteration procedure. 

The calculations were carried out mainly for the dimensions and parameters of the well-known SPT-70 thruster. 
First of all, it should be noted that the considered instability excites a wave which propagates in the direction of the 
electron drift that corresponds to the negative values of the mode number m. The wave is localized in the whole area 
where the applied electric field exists. It can be seen in Fig. 3, where the sample of real and imaginary   parts of kΦ  
is presented. 

 
 
In Fig. 4 the dependence of the instability growth rate and frequency on the absolute value of mode number m 

for two operation modes corresponding to the following values of parameter β: 5.53 and 7.7, 

where               maxo

LH

u
d

β
ω

=                                                                                                                        (19 ) 

If to assume that B0=0.018 T, then the value of β =5.53 corresponds to discharge voltage Ud=200 V, and the 
value of β =7.7 corresponds to Ud=285 V.  

       
From Fig 4 it is seen that: 

1) Instability growth rate for the m with small absolute values (m=-1 and m=-2) exceeds 
or approximately equals the circular frequency. The instability is close to aperiodic. 
The values of γ and ωr are close to low hybrid frequency ωLH. 

2) As |m| further increases the growth rate first slightly grows reaching the maximum at 
m=-4 and then rapidly drops to zero at m=-6. The oscillation frequency steadily 
grows as the mode number increases. Its growth is faster then linear. 

 

Figure 2. Approximation of distributions of 
unperturbed electric field strength and 
potential in channel 

Figure 3.  Sample of localization of wave in 
acceleration channel 



 
The 29th International Electric Propulsion Conference, Princeton University,  

October 31 – November 4, 2005 
 
 

8

In order to additionally to clarify the influence of lower hybrid resonance on exciting the oscillations in HT, in Fig. 
4, the dependence of the growth rate and frequency on |m| is shown by dash lines for the case that the first resonance 
multiplier in the third term of Eq. (4) is equal to 1. This means that we artificially increased the mass of ion until 
infinite magnitude. In this case, the frequency and especially the growth rate strongly drop at m =-1 and m =-2, but 
after that, they progressively approach the values, obtained by solving the full Eq. (4). The influence of the finite 
mass of ions on the instability is most pronounced at the small values of k (See Fig. 5) that corresponds to HT with 
large diameter of the channel (thrusters type of SPT-100, SPT-140). In this case the ratio of the growth rate due to 
perturbed motion of xenon ions to the growth rate at the infinite heavy ions can exceed the order of magnitude. From 
this consideration it follows that lower-hybrid instability in HT as k increases gradually transforms into electron 
istability1, described by Rayleigh’s equation.          

 

 
 
The “driving force” of the considered instability is the nonuniformity of the electron drift velocity. It is 

immediately seen from Eq. (4). If the second derivative of the drift velocity is zero over the range 0≤x/d≤1, the 
instability vanishes. 

As is well known, according to the Rayleigh’s theorem, in the case of boundary eigenvalue problem (4)-(5) but 

without the factor 
12

21 LHω
ω

−
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 in Eq. (4), the necessary condition of perturbation instability is presence of at least 

one point of inflection on the 0yu  profile in the range under consideration. In the case of lower hybrid instability the 

condition of inflection point presence on the drift velocity profile is also of importance. At least for 0yu  profiles 
which not only do not include the inflection point but are also monotonous, the instability was not found at 
numerical solving the problem (4)-(5). 

The fact that near lower hybrid frequency the perturbation frequency growth with the growth of |m| is faster than 
linear points out that these perturbations can decay into two lower-frequency perturbations as a result of so-called 
nonlinear three-wave process. This should ultimately lead to the formation of turbulent oscillation spectrum.  

Taking into consideration the availability of the finite gradient of plasma density and magnetic field induction 
carried out with numerical solution of the eigenvalue problem leads to some reduction in the growth rate of the 
instability but does not suppress it. This issue will be considered in detail in another paper.  

It should be noted that the potential approximation applied in present work is used near the limit of the domain 
of its applicability what should be taken into account in further work. 

III. Possibility of Experimental Identification of Lower-Hybrid Instability  
As follows from the theoretical model the lower hybrid frequency is strong and it should rise above the 

background spectrum. From this point of view, the diffuse peak in the region of 1 MHz observed in Ref. 6 

Figure 5. Parameters of instability at small values 
of |kd| 

Figure 4. Parameters of instability as a 
function of azimuthal mode number 
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seemingly belongs to the oscillations caused be the lower hybrid instability. Besides the expected peak of the 
oscillation amplitudes in the frequency range of f≈0.5-1.5 MHz there is additional important factor that can help in 
identification of the lower hybrid frequency by relatively simple means. In contrast to several other instabilities 
whose frequencies reduce with the magnetic induction growth, the frequency of the lower-hybrid instability not only 
does not reduce, but slightly grows as the B0 increases. For example, as the magnetic induction is increased on 47% 
the lower hybrid frequency increases on 12%. The identification mentioned above can be accomplished using one 
near-wall electrical probe. If there is a possibility to place several near-wall electric probes separated in azimuthal 
and longitudinal directions, the reliability of the instability identification may be increased using the estimation of 
the wave spatial structure. Perturbations caused by the lower-hybrid instability should propagate in the direction of 
the electron drift, at the frequencies about 1 MHz should be mode m=-1 or m=-2 depending on the thruster operation 
mode and according to Fig, 3 should be localized in the whole region where applied electric field exists. 

 

IV. Conclusion 
1. The theoretical model of electron-ion plasma instability in Hall thruster in the region of lower-hybrid 

frequency has been developed. 
2. The “driving force” of the instability is the electron drift velocity nonuniformity. 
3. The instability is localized in the whole region where the applied electric field exists. 
4. It is shown that the instability is strong and for the parameters typical for present-day HT models is close 

to aperiodic. 
5. In the experiments the instability should be observed as the distinct peak in the area of the spectrum f≈0.5-

1.5 MHz.  Additional features that allow the reliable identification of the lower-hybrid frequency are: 
a) growth of the frequency with the increase of magnetic field induction; 
b) large wavelength, comparable with the azimuthal size of the acceleration channel; 
c) the propagation of the wave in the direction of the electron drift; 
d) localization of the wave in the whole region with strong electric field. 
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