
On the anomalous  diffusion mechan i sm 
in Hall-effect thrusters  

I E P C - 2 0 0 5 - 1 1 7  

Presented at the 29 th International Electric Propulsion Conference, Princeton University, 

October 31 - November 3, 2005 

J.M. Gallardo* and E. Ahedo t 

Universidad Politdcnica de Madrid, Spain 

This work investigates numerical ly the development  and sa tura t ion  of  azimuthal  insta- 
bilities, the phenomena  that  sustain them, and the dependence  on several plasma and 
control  parameters .  The t empora l  and azimuthal  evolution of a stat ionary,  azimuthally-  
uniform solution at a given axial section of the th rus te r  is analyzed.  The model  predicts 
the development  and non-linear sa tura t ion  of an azimuthal  instability, which reduces the 
azimuthal  electron drift by about  one order  of magni tude.  This means an increase of the 
t ransverse  t r anspor t  by the same amount ,  in good agreement  with the exper imental  ev- 
idence. The instabili ty features same-order  roles of the azimuthal  oscillations of electric 
force and pressure and, related to this, a decisive contr ibut ion of  t empe ra tu r e  azimuthal  
oscillations. 

I. I n t r o d u c t i o n  

One of the basic hypothesis in most theoretical models of Hall-effect thrusters (HET) corresponds to the 
axial symmetry of the problem. In fact most configurations keep this symmetry, providing we neglect the 
azimuthal distortion in the magnetic field, inhomogeneities in the feeding system, the local influence of the 
cathode and other considerations which may be reasonably considered as comparatively small perturbations. 

Nevertheless, the axial symmetry of the problems does not ensure the axial symmetry of the solution. 
The presence of strong azimuthal and hybrid longitudinal-azimuthal waves propagating in the plasma is 
widely reported 1 and affects significantly the discharge. 

Certain authors % 3 consider that these waves contribute dominantly to electron transport phenomena. In 
fact, several semi-empirical expressions for the 'anomalous diffusion' are included in most numerical models 
in the literature in order to achieve realistic results of the performances of the analyzed device. Nevertheless, 
there is no general agreement in the causes and mechanisms of this enhanced transport and many authors 
relate it to wall interaction effects. 3'4 

In this work we perform a simplified analysis of the growth and propagation of purely azimuthal waves 
in a plasma in conditions corresponding to the ionization region of a conventional HET. A special attention 
is paid to the associated electron transport phenomena, so that the influence of these oscillations on the 
current characteristics of Hall-effect thrusters is described. 

The paper is organized as follows. Section II comments on the basis of the mathematical model. Section 
III  presents a linearized analysis of the growth and propagation of azimuthal waves. Section IV describes the 
numerical model used to perform the non-linear analysis. Section V describes the corresponding non-linear 
results. 
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II. F o r m u l a t i o n  of  the  m o d e l  

The model presented here is closely related to the one-dimensional (1D) model of Ref. 5. This macroscopic 
model considers the plasma to be composed by three independent fluids: electrons e, ions i and neutrals n. 
Ions and neutrals are assumed cold, but an energy equation, which includes heat conduction, is considered 
for the electrons. The magnetic field is considered purely radial and constant in t ime (i.e., only the externally 
applied field is considered). 

The main differences with the model in Ref 5 are: 

• The hypothesis of azimuthal symmetry  is relaxed, so that  the model is now bi-dimensional in space. 
A quasiplanar approximation (i.e. no cylindrical effects) is adopted, with x following the thruster  axis 
and y in the azimuthal direction. 

• Only classical electron-neutral collisions are taken into account in the electron collision frequency ~ .  

• Electron inertia terms are kept in the electron momentum equation. 

• Quasineutrality is not imposed, so that  a finite Debye length An appears. 

The corresponding set of equations is: 

Or~e 
o~- + v .  ( ,~<) .,,,~, (1) 

at + V .  (r~/i) , i r~,  (2) 

~Ttr~ 

Ot 
- -  + v .  ( . ~ 4 ~ 4 )  - v ( ~ % )  + ~ v ¢  - ~ j ~  A ~ - . ~ . ~ ,  (4) 

o~- + v .  ( ~ / / d  - - - ~ v ¢  + . ~ ,  (5) 

a ~  + v .  (~<~,~,~) - . ~ 2 ,  (6) 

5n•TcVTc + e([c A B + rn~u~q~ O, 

(r) 

(s) 

e0V26 ¢(n~ - ni). (9) 

The nomenclature can be found in Ref. 5. Notice that  wall interaction effects are not taken into account in 
this work. 

Our aim here is to study only purely azimuthal waves. In order to formulate a (1D) azimuthal model, 
several simplificative assumptions on the axial dependence need to be made. In view of the model we are 
planning, the most appropriate  or justifiable ones are 

• The axial electron flux n~v~ is known and kept constant. 

• Axial gradients are kept constant where needed, so that  the uniform solution (taken as initial condition) 
satisfies the whole set of equations. 
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By making use of these assumptions we arrive at the following system of equations: 

One O(n~%y) [ O ( ~ ) ]  (10) 
Ot + O ~  u i n ~ -  

Of + Oy u i n ~ -  k Ox ' (11) 

0~- + Oy uin~ - [ ~xTx J ' (12) 

ot + ot Oy + en~ O~q 

anivi~ a(nivi~vi~) eni a6  _ [a(n,iv,i~)] (14) 
Ot + Oy rrN Oy + ~in~v~y k oz j viy, 

On~v~v O(n~v~vv~v) [~)(n~,~) ] (15) 
Of + Oy v'in~v~y - v~y, 

_ a ¢  a (3n~T~)+ a %y) en~v~yoy at ~qy ( 5n~T~v~y + ---en~'/~E~- [~ ( Sn~Tcv~ + %~) + en~v~E~] ' (16) 

5 n~T~ ( .  OT~ [OTc]) (17) 

020 e(n~ - hi). (18) eo Oy ~ 

It is important to highlight that  the terms between brackets corresponding to O/Ox are assumed to be 
known in advance and not to depend on the azimuthal coordinate y and time. They balance the ionization- 
related source term in the energy and particle density equations. Notice that  in equation 14 we have chosen 

to write vi~ instead of L as j,  this is done in order to avoid certain ion drift phenomena 

which have an unclear physical basis and complicate the analysis. A similar consideration has been done on 
the momentum equation for the neutrals. The axial temperature gradient OT~/Ox has been set equal to 0. 

The previous set of equations closes the azimuthal model. The proper boundary conditions are periodic: 
u(y + 2rrR) u(y), where R is the mean radius of the HET. 

The effects of the azimuthal oscillations is mainly felt in the Ohnfs and Fourier's laws for the axial electric 
field and axial heat conduction flux. These are 

q~ 2 rn~w~ \ Oy + am J ' 

axial electron inertia has been neglected in both equations. 

(2o) 

III. Linear stability analysis 

The set of equations (10)-(18) admits simple steady solutions. Let us consider the case with ~ 0, 
vi~ 0, v ~  0, n~0 hi0. We will consider n~0, hi0, n~0, To0 as known in advance. To fulfill the electron 
momentum equation the azimuthal electron velocity must follow 

v~.o • (21) 
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Here, ~0  is the (classical) electron collisionality evaluated at the steady values n~0, T~0. 
The system of equations (10)-(18) may be linearized around the steady solution in a quite straightforward 

way. If for a given variable u(y, t) we consider u uo + CUl e)~t+iky the linearized set of equations may be 
written as: 

AAul BUl + C(k)Ul.  (22) 
Here, A, B and C are complex matrices and C depends on k. Notice that ,  in order to fulfill the boundary 
conditions, only wave numbers such that  Rk K with K E g are admissible. 

Equation (22) defines a complex generalized eigenvahe problem, which may be considered as an implicit 
formulation of the dispersion relation for the plasma. Unstable modes are characterized by Ira(A) > 0. 

A.  U n s t a b l e  m o d e s  

We consider a base solution with n~0 4.05 x 101rm 3, n~0 1.35 x 1019m 3, v~0 - 5 9 4 m / s ,  v~0 
-1 .35  x 10sin/s, T~0 12.1eV, /~ 28ram, AD 0.9mm, B l12G. 

The eigenvalues for K 3 can be seen in figure 1. The modes with the higher frequency correspond to 
the electron plasma frequency and are stable. The rest of the modes are not simple, they have significant 
contributions of most of the variables. Most of them are stable or, at most,  marginally unstable, but, in 
particular, there is an unstable mode with an small oscillatory part  which deserves a closer attention. 
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Figure 1. Eigenvalues  for the  reference case; / (  3 

This unstable mode affects significantly most of the variables with the exception of the neutral density, as 
can be seen in the following table, where the per turbat ion in the electron density is taken as a reference: 

I f l/f o I *l/ f o 
1Z0 ° 1.05Z - 0.5 ° 0.03Z - 179.7 ° 0.26Z - 91.9 ° 1Z - 0.5 ° I 0.64Z - 26.8 ° I 1.59Z - 10.4 ° 

This unstable mode is nearly quasineutral (ion and electron densities behave nearly in the same way). 
Notice that  the contributions of density, potential  and tempera ture  are considerable. The phase angle 
between the plasma density and the electric potential  is not 0 and in section V we will see that  this fact is 
of vital importance when studying electron transport .  

Unstable modes with very similar characteristics appear  for all values of K between 1 and 13. 

B.  D i s a d v a n t a g e s  o f  m o r e  s i m p l i f i e d  m o d e l s  

The previous analysis makes clear the importance of phenomena such as the variation of the electron tem- 
perature (the unstable modes have a very significant tempera ture  contribution) in the description of these 
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azimuthal waves. Nevertheless there are two features included in the model that  need be justified. These 
are to keep non-neutrali ty and the electron inertia. 

Let us consider non-neutrality. Figure 2 plots the real part  of the most unstable eigenvalue as a function 
of the wave number K for different values of AD. It can be seen that  the number of unstable wave numbers 
increase as the Debye length decreases. In fact, the stability limit tends to oc as AD tends to 0. This 
instability of extremely short wavelengths does not correspond to any physical mechanism but to model 
limitations. The proper way to correct it is to retain non-neutral effects. Nevertheless, for the description 
of the most unstable modes, which have moderately low wave numbers, quasineutrality is very reasonably 
satisfied. 
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Figure 2. Uns tab le  e igenvalues  for different ~D 
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Figure 3. Eigenvalues  for K 100 retaining (black cross) and neglect ing  (red circle) e lectron inertia.  

The influence of electron inertia is more subtle and the convenience of its inclusion does not correspond 
to such a physical motivation, but to numerical convenience. Let us consider figure 3, where the eigenvalues 
are plotted for a high value of K with and without neglecting the electron convective term in the momentum 
equation. Even though these eigenvalues are stable, their modulus are big, and the maximum modulus 
is nearly one order of magnitude greater for the case without electron inertia. For classical Runge-Kut ta  
algorithms the size of the allowable t ime-step is inversely proportional to the size of the greatest eigenvalue. 
This implies that ,  if we neglect the electron inertia, the computat ional  t ime increases by nearly one order 
of magnitude. Notice that  the rest of the eigenvalues and eigenvectors nearly do not change and thus the 
solution is not significantly altered by the inclusion (or not) of the electron inertia. 

Finally, the importance of the term of heat conduction is not great for moderate  values of K,  and in 
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practice only increases slightly the stability of the modes with a significant T~ contribution (this effect 
increases for short wavelengths). The term is, therefore, marginal when analyzing the electron momentum 
equation. Nevertheless, electron heat conduction is an important question in the axial problem and it is 
convenient to keep the term also in this azimuthal model. 

IV. N o n - l i n e a r  n u m e r i c a l  m o d e l  

The spatial discretization of the non-linear problem has been performed by using a classical second-order 
scheme of centered finite differences. 

The time evolution is a bit more complicated. The system of equations combines classical evolution 
equations with a purely elliptic equation (Poisson). The system has quite high eigenvalues which impose 
a severe limitation on the time step, making it necessary to take a very large number of steps in order to 
perform a representative simulation. On the other hand, the Poisson equation has to be solved at every time 
step, which is a relatively expensive calculation. Therefore, the total computational cost is surprisingly high 
and. Although this cost is easily affordable for this 1D problem, finding more efficient algorithms seems very 
attractive. 
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Figure 4. Compar ison  between numerical  results  and theoret ica l  calculations for the dominant  eigen- 
values. 

The solution adopted is based on an implicit Crank-Nicholson rule. It does not have the time-step 
limitations typical of explicit schemes, but forces us to solve a non-linear set of equations at every time step. 
In order to solve this system a dual time step approach based on a fifth order Runge-Kutta 6 scheme has 
been adopted to solve the system of equations at every time step. The limitation in the time step applies 
for each of the sub-steps in the dual time step technique, but there is no need to solve Poisson equation at 
every sub-step, it is solved only once in the main step. Furthermore, special techniques for the acceleration 
of the convergence which are not available for unsteady problems, such as nmltigrid or residual smoothing, 
may be used. 

In order to check the accuracy of the method the growth of small perturbations has been analyzed and 
compared with the results from the linear theory; this comparison is represented in figure 4. 

V. R e s u l t s  

In this section we expose the numerical results corresponding to the base solution that  we have used in 
the linear stability analysis (with ~D 0.9 ram). An initial perturbation in n~ and ni with K 1 has been 
added in order to facilitate the development of unstable structures. 

The time evolution of the electron density n~ (chosen arbitrarily as a representative variable) is plotted in 
figure 5. The three sub-figures correspond to different time scales. Notice that  the plot on the top shows the 
complete evolution story. It can be seen that,  after a comparatively short time of development, the plasma 
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structure takes the shape of waves propagating with approximately constant phase velocity and with nearly 
constant amplitude. The average value for the density does not change significantly during the temporal 
evolution. 
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Figure 5. T i m e  e v o l u t i o n  o f  t h e  e l e c t r o n  dens i ty .  

The cental figure shows the details of the development phase of the unstable waves. Notice that  the 
structure is dominated by the wave number K 1, which still corresponds to the initial perturbation. The 
behavior corresponds quite accurately to the predictions done by the linear analysis. 

The figure on the bot tom shows a detail of the structure which is obtained once the perturbations are 
fully developed. The dominant wave number is K 3, which corresponds to the most unstable mode. The 
waves propagate at a phase velocity of approximately 2700 m/s;  this is quite close to the ion acoustic velocity. 
Notice that,  for 'long times' this structure behaves as approximately periodical in time. 

Since the wave amplitude finally stabilizes, it is clear that  non-linear saturation effects play a significant 
role. A complete analysis is at present being performed but preliminary results indicate that  electron energy 
equation is the key to the understanding of these phenomena. 
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In general, it may be noted that  the average values for most plasma variables (n~, T~, n~, vi~) do not 
change significantly due to these phenomena. But very interesting phenomena affecting the electron velocity 
appear. We will analyze them in the next sub-section. 

A .  A n o m a l o u s  d i f f u s i o n  

The time evolution of the Hall parameter is represented in figure 6. The definition used here is 

f2~R nevyedy 
g Jo (23) 

2~t~[~v~] 
The drop in the electron azimuthal velocity is very significant. Once the unstable waves have grown enough 
(compare figures 5 and 6) the transport  across the magnetic field lines is strongly enhanced; this is what is 
usually called anomalous diffusion. The average value for this azimuthal velocity is kept roughly constant, 
but non negligible oscillations at approximately 100 kHz appear as the plasma structure matures. 
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Figure 6. T i m e  e v o l u t i o n  o f  th e  average  Hal l  p a r a m e t e r .  

In order to understand the processes we have to consider the electron momentum equation (13). If we 
neglect electron inertia and integrate in this equation between 0 and 27rR we arrive at 

f02~R 0¢ J0 f 2 ~ R  0 - e ~ d y  + 2 ~ R e B [ ~ v ~ ]  - , , ~ , ~ v ~ d y .  (24) 

Notice that,  due to the periodic boundary conditions, the pressure term vanishes in the equation. 
At the initial instant the second and third terms balance each other, while the first term is 0. Nevertheless, 

since the second term is kept constant and the third term drops abruptly, the new balance must involve the 
first term (azimuthal electric field) and the second one (magnetic force). This is possible as long as the 
electron density perturbation and the potential are not in phase: this would cause the corresponding integral 
to vanish. 

Notice that  the previous expression only involves average values. In order to check the relative importance 
of the different terms, we have plot the r.m.s, values of the terms in the electron momentum equation in 
figure 7. For the root mean square values we use the definition 

u2dy. (25) Ur'rr~'s" ~ J O 

Notice in Fig 7 that  the electric field and the electron pressure have nearly the same importance. Since 
the average value of the electric force balances the magnetic force due to equation (24) we must conclude 
that  the amplitude of the electric force is much greater than its average value. 

In order to explain the importance of the electron pressure a simplified analysis of the modes with low 
wave numbers may be performed. Notice that,  for 'long' wavelengths the plasma behaves approximately as 
quasineutral and electron inertia may be neglected, making it easier to obtain conclusions. 
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Figure 7. T i m e  e v o l u t i o n  o f  t e r m s  in t h e  e l e c t r o n  m o m e n t u m  e q u a t i o n  ( r . m . s . ) .  

By  combining the continuity equations for ions and electrons, the azimuthal current satisfies 

0 
5 7 ( ~ i v  - ~ v )  0, (26) 

which may be expressed as 
r ~ ( v ~  - v ~ )  r( t ) .  (27) 

Now, we may re-write the azimuthal equation for the electron dynamics, 

0 Oy + en~ O~q 

and re-arranging terms 

Tn, el./e 
+ - - ( n ~ v i y  - F). (29) 

e Oy n~ Oy n~ n~ 

;2~R ~ d y  0, yielding Since the electric field comes from a potential, one has ao 

J O  )'~e J O  )'~e J O  )'~e J O  

The ion azimuthal velocity vi~ is much smaller than the electron velocity and thus the collisional te rm plays 
a very secondmT role. Therefore we arrive to 

j o ~  ~ O(~T~) d~- Jo ~ ~ B ( ~ )  d~ 
n~ Oy n~ 

(31) 
f 2rc t~ rne~'e dy 

JO 
~e 

I f  T~ were constant, then 

2~R 1 a( :r~ - -  dy 0, (32) 
J 0  )'~e J 0  )'~e 

and the current equation would not  be altered by the potential perturbations. This is probably the main 
reason why the azimuthal gradient of the temperature has a vital importance in order to describe the 
phenomenon. 
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VI.  C o n c l u s i o n s  

The model presented in this paper predicts the presence of unstable purely azimuthal modes in the 
discharge of a Hall-effect thruster. Non linear saturation effects limit the growth of the waves and lead to a 
pseudo-periodic regime where the perturbation amplitude is kept approximately constant. 

The azimuthal waves are responsible for non-linear electron transport  phenomena which enhance the 
plasma diffusion by a large factor. The contributions of both the electric field and the electron pressure term 
are determinant in order to explain these phenomena. 
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