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Abstract: A Retarding Potential Analyzer (RPA) consists of a series of variably biased 
electrodes allowing ions with sufficient energy access to a collection plate while repelling 
electrons and other low energy ions.  The dimensions of the RPA, including electrode 
spacing and orifice diameter, are inversely restricted to the density of the incident plasma, 
making high-density measurements of ion energy distributions susceptible to space charge 
limited inaccuracies.  A 200 µm diameter single-orifice or single-channel RPA has been 
coupled with a Microchannel Plate (MCP) of 0.326% transparency to relax these 
constraints, producing viable ion energy measurements within plasma plumes of number 
density greater than 1x1018 m-3.  To calculate the expected ion current measured by the RPA 
current collection plate for a given range of plasma properties, a triple numeric integration 
scheme was applied.  Using nested numeric integration methods for each integral with 
functionally dependent upper bounds, the resultant Current Collection Theory (CCT) 
accounts for both geometric flux limitations as well as voltage sweeping effects similar to 
that of a classical gridded RPA.  This paper focuses on the analysis of I-V curve sample data, 
specifically the determination of ion parameters using the developed CCTs for each type of 
RPA design.  While nonlinear least squares regression was applied to provide a reliable 
calculation of ion drift velocity, ion temperature, and ion number density using both the 
classical RPA CCT as well as the Multi-Channel micro-Retarding Potential Analyzer (MC-
µRPA) CCT, iterative methods were required when using the Single-Channel micro-
Retarding Potential Analyzer (SC-µRPA) CCT. 

Nomenclature 
A  = area*† effE  = effective energy corresponding to  effφ
, , ,a b c d  = finite integral bounds 

nES  = Simpson’s rule approximation error 
( , )tC r  = peculiar velocity vector f  = distribution function 
( , )tc r        = total velocity vector 4f  = integrand’s fourth derivative 
0( , )tc r       = mean velocity vector 

1 2,g g  = upper bound function values 
C  = peculiar speed , cpI I  = collector plate current 
c  = total speed Inner  = pertaining to the innermost integral 

0c  = mean speed k               =   Boltzmann constant 
d  = diameter L  = collision length 

3vd  = volume of velocity space element l  = length 
m  = mass                                                            

4M  = integrand’s fourth derivative maximum *Graduate Research Assistant, Department of Mechanical 
Engineering, jimmyp@wpi.edu. Middle  = pertaining to the middle integral 
† Professor, Department of Mechanical Engineering, 
gatsonis@wpi.edu. 

Outer  = pertaining to the outermost integral 



n̂  = unit normal vector 
( , )n tr  = number density 

( , )ccN S D  = number flux without wall collisions 
( , )crN S X  = number flux with wall collisions 

sN�  = number flux of species s  
Q  = fluxal quantity 
q  = charge 
r  = position vector 
r  = radius 
S  = ion speed ratio G
S  = ion speed ratio vector 
s  = pertaining to species s  
T  =    temperature 
t  = time 
V  = effective potential ratio 

effv  = effective velocity corresponding to  effφ

( , )w X D    = Clausing probability function 
X  = normalized channel length 
Y  = arbitrary integration variable 
β  = inverse of most probable ion velocity 

( )Sχ  = Patterson flux component 

MCPχ  = MCP transmission fraction 
,y z∆ ∆  = step sizes 

φ  = effective potential, azimuthal angle 

effφ  = effective retarding potential 
ϕ  = cylindrical flux integration angle 
( , )S Dη  = Patterson flux component 

Dλ  = Debye length 
θ  = elevation angle G
Ξ  = total velocity ratio vector G
Ψ  = peculiar velocity ratio vector 

( )DΨ  = Patterson flux component 
ζ  = arbitrary integration angle 
{ , , }u v w    = total velocity components 

0 0 0{ , , }u v w   = drift velocity components 
{ , , }U V W     = peculiar velocity components 

ˆ ˆˆ{ , , }u v w    = velocity space unit normal vectors 
ˆ ˆ ˆ{x,y,z}     = Cartesian unit normal vectors 

I. Introduction 

T HOROUGH characterization of ions and neutrals is one of the most important issues in the design and 
optimization process of many electric propulsion devices and plasma sources.  Energy analyzers have been 

utilized for decades in both ground-based experiments and in situ diagnostics packages for the analysis of electric 
propulsion thrusters, atmospheric plasmas, plasma processing, and other plasma flow applications.  Retarding 
Potential Analyzers (RPAs) are particularly useful in this process, as they are capable of characterizing both ion and 
neutral parameters.  RPAs systematically filtrate the electrons and low energy ion species of an incident plasma 
through the use of a series of electrically biased grids or electrodes.  Only ions of a sufficient energy level and 
neutrals have access to a collector plate.  An RPA generally consists of four to five electrodes: A Floating Electrode 
(FE) grounded to the external plane of the RPA housing provides an electrically uniform environment to the incident 
plasma.  An Electron Retarding Electrode (ERE) is biased negatively to repel all incident electrons.  One to two Ion 
Retarding Electrodes (IREs) are used to repel low energy ions (Two IREs are used to prevent degradation of the 
desired electric field.).1  Finally, a Secondary Electron Suppression Electrode (SESE) is used to prevent any low 
energy electrons emitted due to secondary emission or specific ionization from traveling to the collector plate.2  I-V 
curves are generated by taking ion current measurements at various IRE potentials, allowing for the determination of 
ion number density, ion temperature, and ion drift velocity.3  Neutral densities can be determined by biasing the 
IREs to repel all ions, allowing only the neutrals to be counted by a particle collector.4  
        RPAs can be categorized under three basic design types: traditional gridded RPAs, spherical RPAs, and single-
orifice (or single-channel) RPAs.  Gridded RPAs are generally used for relatively low-density plasmas, have been 
used for electric propulsion device characterization in both ground-based experiments and in situ diagnostics 
packages.  For example, a traditional gridded RPA was implemented to study the ion species found in the Charging 
Hazards and Wake Studies (CHAWS) experiment, which encountered ion number densities no greater than 1x1012 
m-3.5  The Spherical RPAs, which are similar to gridded RPAs in that they have a series of concentric spherical 
grids, have been used to characterize the ionosphere on Space Shuttle flights STS-3/OSS-1 and STS-51/SL-2.6  Of 
particular interest for high-density plumes (greater than 1x1018 m-3) is the single-channel RPA design due to the 
constraints employed to avoid space charge limitations within the RPA electrode series.7  Space charge effects will 
not only increase the likelihood for substrate breakdown, arcing, or other electrical breakdown phenomena, but will 
also decrease the accuracy of the RPA.8  The Debye length (λ ) is the virtual limit of space charge neutrality, and it 
is necessary to restrict the single orifice diameter to no more than two Debye lengths, and the spacing of electrodes 
to no more than four Debye lengths.9  Conversely, sizing the RPA too small will result in a weak ion current signal 
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strength.  This can be solved by increasing the Debye length of the plasma incident to the RPA by means of a low 
transparency mesh or entrance slit.10   shows the measurement capability of a single-channel RPA as it 
adheres to the orifice diameter constraint (assumes an electron temperature of 10 eV). 

Figure 1

Figure 1.  RPA capabilities and optimum RPA orifice diameter as a function of number density. 
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A low transparency Microchannel Plate (MCP) was combined with a Single-Channel micro-RPA (SC-µRPA) to 
relax the  constraint, as shown in Figure 2.  The resultant Multi-Channel micro-RPA (MC-µRPA) design 
increases the diagnostic’s capability to perform accurate measurements of Pulsed Plasma Thrusters (PPTs), high-
powered Hall thrusters, and other high-density plumes.11     
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Figure 2.  MC-µRPA housing, insulation, and aperture. 

The complexity of the resultant design hinders the development of any proper analytical model for eventual use in 
the device’s Current Collection Theory (CCT).  Classical expressions require numeric integration so that nonlinear 
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least squares regression and current derivative methods can no longer be applied to determine macroscopic ion 
properties. 

II. DµRPA and Single Orifice Current Collection Theory 
        To develop an analytical model which accounts for both cylindrical channel flux limitations and voltage 
sweeping effects, it is first necessary to derive the less complex cases, specifically the surface number flux of a 
drifting Maxwellian plasma through an electrically biased surface element and the number flux limitation through a 
cylindrical channel, derived in spherical coordinates.   
        The µRPA Current Collection Theory (CCT) can then be modeled as the combination of a cylindrical channel 
(of MCP geometry) with an electrically biased exit surface.  The Single-Channel micro-RPA (SC-µRPA) is then 
modeled as a cylindrical channel at a constant effective retarding potential.  All drifting plasma species are assumed 
to be Maxwellian.  The expressions concern only positively charged ion species and all potentials are assumed to be 
positive. 
 
A. Velocity Descriptions 
        The linear velocity of a molecule measured at its center of mass as it moves with respect to a given reference 
frame of Cartesian unit vector axes {x  can be denoted as the vector , indicating a dependence on both 
position and time.  The molecular speed, c , is defined by the magnitude of .  This total velocity vector would 
then have components { ,  corresponding to a position vector in a velocity space of unit vector axes { , .  
Triple integration over components u v  would then correspond to a volume integral in velocity space, allowing 
for calculation of velocity distributions and other fluxal properties.12 

ˆ ˆ ˆ,y,z}

, ,w

( , )tc r
( , )tc r

, }u v w ˆ ˆˆ , }u v w

        While individual molecules each have total velocity  relative to a given reference frame, a flow 
comprising of a single-species gas has a macroscopic velocity relative to that same reference frame.  Weighted by 
molecular mass, this macroscopic velocity is called the mean mass velocity, or mean velocity, and at any point r  
is given by 

( , )tc r

,t

 0

( , )
( , )

( , )

t
t

n t d
= ∑ c rc r

r r
 (1) 

having components { , .  The summation over  is performed over nd  molecules.12  Similarly, 
 and c  are averaged over a small time interval from t  to t .  The mean speed is then defined by 

0 0 0, }u v w ( , )tc r r
( , )n tr ( , )tr dt+

 0

c
c

nd
= ∑

r
. (2) 

While the notation can be dropped as shown above, mean speed is also dependent upon r  and t . 
 With the mean mass velocity defined, there exists a molecular velocity measured in relation to a reference frame 
moving at mean mass velocity.  This is known as the peculiar velocity, C r , having components { , .  By 
definition 

( , )t , }U V W

  (3) 0( , ) ( , ) ( , )t t= −C r c r c r .t
The velocity vector diagram can be seen in Figure 3. 
 

0c
C

c 
 
 
 
 
 

Figure 3.  Velocity vector diagram. 
 
Therefore, the total velocity of a molecule is the sum of the molecule’s peculiar velocity and the mean velocity of 
the entire flow.12  The peculiar speed of a molecule is denoted by C . 
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B. Surface Number Flux for a Maxwellian Drifting Plasma with an Applied Potential 
The flux of some quantity Q  having number density n  and total velocity vector c  through a surface 

element in the negative n  direction is given by 
 { , , }u v w

ˆ nQ , assuming that n  and that  lies within the x-y plane.12  
The surface element coordinate system is shown in Figure 4, where the total velocity vector consists of both a mean 
velocity, , and a peculiar velocity vector, C , such that .  In Cartesian 
coordinates, the fluxal quantity 

u ˆ x̂=

, }W

c

= +c C0 0 0 { , ,u v wc 0}  { ,U V 0c

nQu  can be rewritten by incorporating the distribution function, to obtain 
∞

 
0

nQu n Qufdudvdw
∞ ∞

−∞ −∞

= ∫ ∫ ∫  (4) 

where f  is the distribution function.13  Assuming a Maxwellian distribution for a mixed equilibrium gas with a 
mean velocity , the distribution function 0 0=c f  for any single species s  can then be expressed as  

 
3

2 2
3 /2

exp( )sf C
β

β
π

= −  (5) 

 where 
1/ 2

2
sm

kT
β

 =   
. (6) 

To determine the inward normal flux for a single species s  in equilibrium through a surface element, the 
quantity Q  is set equal to 1.  Expanding the integrals containing the distribution, with c , gives the following 
expression: 

= C

 
3

2 2 2 2 2 2
3/ 2

0

exp( ) exp( ) exp( )s
s s s s s s

n
N W dW V dV U

β
β β β

π

∞ ∞ ∞

−∞ −∞

= − − −∫ ∫ ∫�
s sU dU

dc

. (7) 

n̂

c y
z

x

θ

 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Molecular flux across a surface element. 
 
        To develop an identical expression in spherical coordinates using the distribution function, it is necessary to 
express the volume of velocity space element in the form of 
  (8) 3 2v sind c d dθ θ φ=
where is the total particle speed, is the polar angle, and is the azimuth angle.  Since the number of particles 
striking the surface element per unit time is , the distribution of speeds can then be expressed for a 
single species s  as 

c θ φ
3( cos ) vc fdθ

 
/2 23

2 2 2
3 /2

0 0 0

cos exp( ) sins
s s s s

n
N c C c

π πβ
θ β θ φ θ

π

∞

= −∫ ∫ ∫�
sd d dc . (9) 

Further simplification occurs with the substitution of total speed ratio Ξ = , and since the total velocity  is the 
same as the peculiar velocity C  in this case, the distribution of speeds can be rewritten as  

scβ c

 
/2 2

3 2
3/2

0 0 0

cos exp( )sins
s

n
N

π π

θ θ φ
βπ

∞

= Ξ −Ξ∫ ∫ ∫� d d dθ Ξ . (10) 

 If the surface element has an effective potential resultant from an applied potential close to the element, a 
portion of the positively charged particles within the stationary gas will be repelled.  If the effective potential φ  of eff
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the surface element corresponds to an effective energy E  and an effective velocity v , then the inward flux will 
only consist of molecules having velocity greater than .  This effective potential is taken into account by 
modifying the lower bound of the x-direction velocity integral of the inward number flux expression.  A spherical 
coordinate system derivation requires a modification of the lower bound of total speed integration.  Since this bound 
is dependent on θ , this integral must be performed prior to the elevation angle integral: 

eff

v
eff

eff

0

cos

=

=

d d dθΞ

e
u i

φ

0 cos

0

u

v

cos ex d dΞθ

2S −

3 2(

2 2(s Vβ β∫ ∫ ∫ p(s s sN�

 
/2 2

3 2
3/ 2

0 / cos

exp( )sin
eff

s
s

V

n
N

π π

θ

θ θ
βπ

∞

= Ξ −Ξ∫ ∫ ∫� . (11) 

 A drifting plasma having a mean velocity vector  would make some angle  with the surface element normal 
vector .  Assuming θ  lies entirely in the x-y plane, then a molecule’s total velocity components would be 
comprised as follows: 

0c θ
n̂

  (12) 
0 0

0

:   u cos

:   v sin

:   w=

x U U c

y V V c

z W

θ

θ

= + +

= + +

which indicates that particles having x-direction peculiar velocity greater than −  will pass through the 
surface element.  To calculate inward normal flux in a spherical coordinate system for a drifting gas, v ctor analysis 
of velocities is required to manip late the distribution of speeds.  In th s case, the total velocity vector Ξ

c θ

G
 is not equal 

to the peculiar velocity vector Ψ
G

, where .  Instead, sCβΨ = SΨ = Ξ−
G GG

, as shown in Figure 5.  S
G

 is the mean 
velocity vector, where S .14 0β= sc
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Figure 5.  Velocity ratio vector diagram with surface element. Figure 5.  Velocity ratio vector diagram with surface element. 
  
The distribution of speeds is then written as The distribution of speeds is then written as 

  
/ 2 2

3 2
3/ 2

0 0 0

p( )sins
s

n
N d

π π

θ θ φ
βπ

∞

= Ξ −Ψ∫ ∫ ∫� . (13) 

It is then necessary to obtain an expression for  in terms of Ξ .  From Figure 5, 2Ψ
G

 2 2 2 cosS θΨ = Ξ + Ξ
G

 (14) 

which leads to 

 
/2 2

2
3/ 2

0 0 0

cos exp( 2 cos ))sins
s

n
N S S

π π

θ θ
βπ

∞

= Ξ − Ξ + − Ξ∫ ∫ ∫
GG� . (15) d d dθ φ θ Ξ

 Assuming the drift velocity is aligned with the surface element normal vector and taking into account the effects 
of both an applied potential and a drift velocity, integration along the x-direction peculiar velocity from v  to 
infinity, is shown by 

0eff sc−

 
0

3
2 2 2 2

03/ 2
exp( ) exp ) ( )ex )

eff s

s
s s s s s

v c

n
W dW dV U c U dU

β
β

π

∞ ∞ ∞

−∞ −∞ −

= − − + − . (16) 

Integration yields 
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2 2

0
01/ 2

exp( ( ) )
{1 erf( ( ))}

2
eff ss

s s

v cn
N c

β
π β

π β

 − − = +  
�

0eff sv c− . (17) 

When converted to current and taking into account area, this expression is known as the classical RPA CCT, as 
shown by 

 
2 2

0
01/ 2

exp( ( ) )
{1 erf( ( ))}

2
eff ss

RPA s s eff s

v cqn A
I qN A c v c

β
π β

π β 0

 − − = = + −  
� . (18) 

To obtain the classical RPA current collection theory through a spherical coordinate system derivation, it is 
necessary to combine the effects that drift and applied potential have on the distribution of speeds.  Specifically, the 
lower bound of the speed integral must be modified, elevation angle  integration must be performed last, and the 

 identity must be applied.  These requirements result in the following distribution of speeds: 
θ

2Ψ

 
/ 2 2

3 2 2
3/ 2

0 / cos 0

cos exp( ( 2 cos ))sins
s

Veff

n
N S S

π π

θ

θ θ
βπ

∞

= Ξ − Ξ + − Ξ∫ ∫ ∫ d d dθ φ θΞ
GG� . (19) 

Integrating first with respect to φ  and then with respect to  yields Ξ

{

/2 2
2 2

1/2 2
0

2 2 2 2 2 2 4

2
1/ 2 3 2 2 2 2

2

tan( )exp (1 sin )
2 cos

                  2 exp 2 sin ( cos cos cos )

                    cos ( )exp 3 2 cos 2 cos
cos

s
s

n V
N S

SV S V SV S

V
S S S S

π

θ θ
βπ θ

θ θ θ θ

π θ θ
θ

   = − + +      
 + + + + 

 
 + + + +  

∫� i

2
2

2

cos
( )

cos

cos
                    3 .

cos

V S
erf

V S
erf d

θ
θ

θ

θ
θ

θ

 − +      
  − +  +       

  (20) 

This expression contains eight terms, the last two of which contain the error function of a cosine as shown.  When 
integration over  is performed using a standard symbolic integration kernel such as Maple15 or Mathematica16, all 
but the last two terms will properly integrate.  The precise problem exists in the error function of a cosine.  
Numerical integration is required, and for all cases, values match that of the classical RPA CCT derived in Cartesian 
coordinates.   

θ

C. Cylindrical Channel Flux Limitations 
        In a cylindrical channel of diameter to length ratio , the flux of neutral particles can be classified into two 
species: those which travel through the entire channel without collision with the inner wall and those which have at 
least one collision with the inner wall.  Particles within the latter species are classified by the location of their first 
collision with the inner wall at a normalized axial location between X and .  The total flux of particles 
through a cylindrical tube can then be expressed by 

D

X dX+

  (21) 
1

0

( , ) ( , ) ( , )cc crN N S D N S X w X D dX= + ∫
where  is the uninhibited flux, and N  is the flux containing particle/wall collisions, as shown in Figure 6.  The 

 term is the emergence probability function of particles exiting the channel based on diffuse reflection.  
Due to the introduction of potentials along the channel’s inner wall, one can assume 100% wall absorption.  
Through this assumption, the total flux is equal to the uninhibited flux. 

ccN

)D
cr

( ,w X
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L

X dX

ccN

S

crN

d

d
D

L
=

 
 
 

 

 

 

 

Figure 6.  Number flux species through a cylindrical channel of finite diameter to length ratio, D . 

        There are at least two known methods of calculating the uninhibited flux of neutral particles.  While both 
methods operate in a spherical regime and produce the same results, only one method, developed by Patterson 
(1971), manipulates the distribution function in spherical coordinates using vector analysis.14  Patterson’s 
expression is as follows: 

 

2

2

( , ) ( )
2

4
     ( )exp( ) ( , )

m
cc

nC
N S D r S

S
D S S

π χ
π

η
π

D


= 




Ψ − − 


 (22) ) 

with with 

  2( ) exp( ) (1 ( ))S S S erfχ π= − + + S , (23) 

 ( )2
2

2
( ) 1 1D D

D
Ψ = + − , and (24) 

 

1 21 tan 1

0 0

2 2

1
( , ) [1 ( cos )]

     cos exp( sin )

D Y

S D dY erf S
D

S d

η

ϕ ϕ ϕ

− −

= +

−

∫ ∫ ϕ
. (25)  

The other, developed by Hughes & De Leeuw (1965), considers a series of beamlets comprising the flow.17  Both 
methods produce different expressions, with the same numeric results.   

D. Multi-Channel micro-RPA Current Collection Theory 
        The directionality of the MCP allows for the valid assumption that the cylindrical channel effects and applied 
retarding potential can be treated independently.  That is, all geometric flux limitation occurs within the 
microchannels.  Upon entry into the RPA electrode series, the plasma is directional.  Minimal flux limitation due to 
the geometry of the electrode series will occur.  Similarly, since the MCP is spot-welded to the FE, the MCP is 
inherently grounded to the RPA housing.  Therefore, minimal voltage sweeping will occur within the 
microchannels. 
        The resultant CCT requires the calculation of an MCP transmission fraction in similar fashion as developed in 
Partridge et al. (2003), as shown by 

 MCP
MCP

( , )

( , )
cc

cc

N S D
N S

χ =
∞

 (26) 

where the numerator represents the flux exiting the Microchannel, and the denominator represents the flux entering 
an infinitely-thin orifice of the same diameter (entering flux).11  The current collection equation for an MC-µRPA 
is then  

 
2 2

0
0MCP MCP 3/2

exp( ( ) )
{1 erf( ( ))}

2
eff

D RPA dr effi
v c

v v
qAnI qANµ

β
π β

β
χ χ

π
c

 − − + − 
 

= =  (27) 

where  corresponds to the effective transparent area of the MCP. A
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E. Single-Channel micro-RPA Current Collection Theory 
        Without an MCP, cylindrical flux limitations and voltage sweeping both occur throughout the single-channel 
electrode series.  Recall from Section B that the distribution of speeds for a Maxwellian drifting plasma with an 
applied potential will have the form  

 
/ 2 2

3 2 2
3/ 2

0 / cos 0

cos exp( ( 2 cos ))sins
s

Veff

n
N S S

π π

θ

θ θ
βπ

∞

= Ξ − Ξ + − Ξ∫ ∫ ∫ d d dθ φ θΞ
GG� . (28) 

Integration over  must be performed first to incorporate the cylindrical channel flux limitation.  Next, integration 
over must be performed from zero to some arbitrary angle .  Third, integration of ζ  from zero to 

Ξ
θ ζ

2 )Yarctan 1D −( , followed by a final integration over Y  from zero to one.  The number flux is reduced to 
include only the species traveling through the RPA without a wall collision, in accordance with the 100% wall 
absorption assumption.  The result is the following: 

 
( )2arctan 1

1
3 2 2

3 /2
0 0 0 / cos

cos exp( ( 2 cos ))sin

D Y

s
cc

Veff

n
N S

ζ

θ

θ θ
βπ

−
∞

= Ξ − Ξ + − Ξ∫ ∫ ∫ ∫
GG
S d d d dYθ θ ζΞ . (29) 

Integration yields 

 

( )2arctan 1
1 2 2 2 2 4

2 2
0 0 0

2 2 2 2

2 2 2 2

2 2 2 2

2 4

2 cos ( ) cos ( )2 1
tan( )exp

cos ( ) cos ( )

cos ( )exp(2 cos ( ))
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 (30) 

 
which is defined as the SC-µRPA current collection equation.  As in the case of a drifting Maxwellian plasma 
with an applied potential as developed in spherical coordinates, the error function of a cosine requires numeric 
integration.  Validation of the SC-µRPA current collection equation is done by comparison with the previously 
derived extreme cases:  1. The case of a relatively thin orifice at various potentials as shown in .  2. The case 
of an unbiased or unsegmented channel of various diameter to length ratios, as shown in Figure 8.  Ion parameters 
used were: Carbon, n m , S , T , and d m . 16 35.5x10 −= 1.187= 10e= V 200µ=

Figure 7
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Figure 7.  SC-µRPA CCT validation: Thin orifice. 
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Figure 8.  SC-µRPA CCT validation: Unsegmented channel. 

There is some error at low diameter to length ratios, but the SC-µRPA CCT shows overall agreement in both cases. 

III. Numerical Evaluation and Validation 
A.  Numerical Integrator 
        Math solvers such as Maple15, Mathematica16, and Mathcad18 were unable to numerically integrate the SC-
µRPA current collection equation for relatively low plasma temperatures (less than 10 eV), particularly due to the 
functionally dependent upper bounds.  A triple numeric integrator program was subsequently developed in 
FORTRAN to accurately calculate the expected collector plate current for any given set of plasma parameters and 
SC-µRPA dimensions.   
        Since the functionally dependent upper bounds of the current collection equation required that the integration 
be performed serially from the innermost integral to the outermost integral, rather than separately, the program 
incorporated a series of nested Simpson’s rule approximation subroutines.  For every one subinterval calculation for 
the outermost integral’s approximation, an entire Simpson’s rule approximation must be performed for the middle 
integral.  Likewise, performing each subdivision calculation of the middle integral’s approximation requires an 
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entire Simpson’s rule approximation for the innermost integral.  For example, a subinterval resolution of 100 x 100 
x 100 for the outermost, middle, and innermost integrals respectively will require 10,000 Simpson’s rule subinterval 
calculations for the middle integral, which will in turn require 1,000,000 subinterval calculations for the innermost 
integral.  Since the innermost integral contains approximately more than 150 operations, with both the middle and 
outermost integral containing roughly five operations each, the result will involve more than 150,050,500 operations 
total.   
 
B.  Validation and Error 

To ensure validity of the triple numeric integrator concept, test cases of various triple integrals with functionally 
dependent upper bounds were tested at various resolutions.  For the current collection equation, it was found that 
there was less than a 2% error with subdivision resolution of 10,000 x 10,000 x 1,000 for the outer, middle, and 
inner integral respectively.  Since the inherent accuracy of the Simpson method is based on the fourth derivative of 
the integrated function, increasing the inner integral subintervals from 1,000 to 10,000 would only slightly increase 
accuracy (ranging from a 0.45% to 0.70% increase for Carbon plasma) at the cost of significant computational time.   

To check the validity of the triple numeric integrator program as it applies to the SC-µRPA CCT, comparison of 
its data to that of existing complimentary data (greater than 10 ) from the math solvers was required.  I-V curve 
comparisons for the test RPA geometry of D  at various effective potentials are shown in Figure 9.  The 
voltage sweep was performed for Carbon at ion speed ratios of , with n m .  

 is shown, containing the largest error of 1.3% at φ .  Subinterval resolution was 10,000 x 10,000 x 
1,000 for the outermost, middle, and innermost integral respectively.   

eV

80V=
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0.1,  1.0, and 5.0S = 15 31x10 −=

1.0S =
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Figure 9.  Validation of the triple numeric integrator program. 

        The error associated with the Simpson’s rule approximation can be calculated for each integral as a function of 
the subinterval resolution, the integral bounds, and the fourth derivative of the integrand.  For a single integral with 
finite bounds, the Simpson’s rule approximation error is given as 

 
5

4
4

( )

180n

M b a
ES

n

−
≤  (31) 

where  is the maximum absolute value of the fourth derivative of the integrand 4M ( )f x , provided that n  is even 
and ( )f x  is continuous on the interval [ , .19 ]a b
        For a triple integral with functionally dependent upper bounds in the innermost and middle integrals, kept in 
general form as  

 
1 2( ) ( )

1 2 3( ) ( ) ( )
g x g yb

a c d

f x f y f z dzdyd∫ ∫ ∫ x , (32) 

the error becomes  
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where subscripts Ou , , and Inne  correspond to the Outermost, Middle, and Innermost integral 
respectively.   

ter Middle r

        For the specific case of the current collection equation: 
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and 4
3f  is approximately 2,500 terms in length.  Exact values of 4

3f  are calculated in Mathematica16 for specific 
cases.    M  for the test geometry of .    M , occurring at low effective 
retarding potentials and S .   For the test geometry, the total error of the triple numeric integration becomes 
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 (35) 

        Error bars generated from (35) are displayed on Figure 13 and Figure 14 (See Appendix).  A majority of the 
error bars are less than 5%, which do not appear on a logarithmic scale.  The maximum error is less than 60%, 
occurring at zero ion retarding potential and relatively high ion speed ratios. 

IV. Determination of Plasma Parameters 
Determining macroscopic plasma parameters from experimentally obtained I-V curve data is essentially the 

inverse problem of developing a valid current collection model.  Nonlinear least squares regression of the classical 
RPA current collection theory has been implemented as a means to extract plasma parameters from experimental 
data for traditional gridded RPAs.  Specifically, ion number density, ion velocity, ion temperature, and species 
concentrations can be calculated for a traditional gridded RPA through the summation of individual species 
distribution functions.20,21  Similar analysis can be applied towards data obtained from an MC-µRPA.  The MCP 
transmission fraction simply appears as a constant in the derivatives matrix, and the least squares fit is performed.   

However, such analysis cannot be applied to the single-channel micro-RPA current collection theory, since the 
process is based on numeric integration.  It is necessary to perform an iterative method of comparing the sample I-V 
data with that of the triple numeric integrator.   This Ion Parameter Extraction Method (IPEM) has been 
implemented using MATLAB.22  The IPEM schematic, including specific fuzzy logic rules, are demonstrated in 
Figure 12.   

First, the IPEM program imports the I-V curve sample (experimental) data and polyfits the available data points 
to produce an averaged curve with data points at desired effective voltage values.  An example of the polyfit is 
shown in Figure 10.   
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Figure 10.  I-V sample data and polyfit smoothed curve. 
 

Assuming a known RPA geometry and a single ion species of known mass, the triple numeric integrator program is 
run at initial guess values for ion density, temperature, and speed ratio.  The resultant TNI-generated I-V curve is 
compared to that of the polyfit sample data.  The difference and slope at each data point (every 5V from 0V to 20V) 
is calculated, as well as the total error.  IPEM is limited to the assumption that the RPA channel is at a constant 
effective retarding potential, causing data points at potentials greater than ~25 V to be ignored.  This allows for close 
scrutiny of I-V curve behavior at relatively low ion temperatures (less than 1.0 eV), which are sensitive to effective 
retarding potentials higher than 25 V.   
 Fuzzy logic was employed to increase the accuracy and minimize computational time throughout this process.  
Using the fuzzy logic toolbox in MATLAB22, a set of four rules was developed to determine parameter 
modifications for the next iteration.  For example, the first IPEM rule states that if the current calculated by the triple 
numeric integrator is less than that of the sample data at an effective potential of 0V, the number density value to be 
used for the next iteration, n , will be increased by .   Once the total error is constant (fluctuating 
between two values at every other iteration) the iteration stops, ion drift velocity based on ion speed ratio and 
temperature is calculated, and all final parameters (including total error) are output.  IPEM convergence has been 
validated using a sample I-V curve of known ion parameters, such that the end result outputs the aforementioned 
parameters within 5% error.  Convergence behavior of the IPEM program is shown in Figure 11. 

TNI
( ( ) 1)1x10 TNIO n −
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Figure 11.  IPEM Convergence: Sample I-V curve and TNI-generated I-V curves at various iterations. 

Further reduction of the error can be achieved by optimizing the fuzzy logic rules to decrease the step size for each 
modification of the guess values, but is not necessary.  A majority of the error exists in the polyfit of the initial 
sample data, which is the function of the number of degrees specified for the polyfit function, as well as the 
perturbation of the I-V curve sample data from a TNI generated curve.  The error for each TNI generated curve is 
then equal to the sum of the TNI error at each data point, as derived in the previous section. 

V. Results and Discussion 
        Data obtained from the triple numeric integrator program for a broad range of Carbon and Xenon plasmas are 
contained in Figure 13 and Figure 14, respectively.  All plasmas are assumed to consist of a single species of singly-
charged monatomic positive ions, with the low energy electrons assumed to have been entirely repelled by the ERE 
and SESE.  The test RPA geometry used throughout has a diameter d  and length l , resulting 
in a diameter to length ratio of D  with no MCP.  I-V curves were generated for each plasma at three 
different number densities (n m ), three different ion temperatures 
(T e nd three different ion speed ratios (S ).  Data points were calculated 
at effective ion retarding potentials of φ .   
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        The ions are exceedingly susceptible to any retarding potential at relatively low temperatures, regardless of 
drift velocity.  At higher temperatures, high ion speed ratios will tend to eliminate the effects of the retarding 
potential.  The magnitudes of the predicted current values at relatively low ion retarding potentials (less than ) 
are of particular interest.  Magnitudes at relatively high temperatures range from microamps to nanoamps, which is 
to be expected during experimental implementation of the test RPA.  It is clear that the triple numeric integration 
scheme and ion parameter extraction method are valid. 

20V

VI. Conclusion 
RPA entrance areas are subjected to the constraint in order to avoid space charge limitations.  For relatively 

high-density plasmas, this constraint will either oblige small RPA dimensions or necessitate filtration of the incident 
plasma through an entrance slit or low-transparency mesh.  In either case, classical RPA current collection theory no 
longer applies. 

2 Dλ

This paper presented the development and validation of a robust current collection theory capable of accurately 
portraying a broad range of plasmas for both the SC-µRPA and the MC-µRPA.  Since the triple numeric integrator 
program used to calculate each data point employed a series of nested Simpson’s rule approximation subroutines, 
the accuracy of the SC-µRPA CCT is limited to all three subinterval resolutions as well as the constant effective 
retarding potential assumption.  The MC-µRPA CCT is limited to the accuracy of the assumption that the cylindrical 
channel flux limitations occur entirely within the MCP.  I-V curve data is presented for two monatomic plasmas at 
various densities, temperatures, and speed ratios.  The reverse process was also fully resolved: extraction of the 
aforementioned parameters from sample I-V curve data using an iterative method employing the TNI program 
where nonlinear regression was no longer valid. 
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Appendix – IPEM Schematic and TNI-Generated I-V Curves 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 12.  Ion Parameter Extraction Method (Assumes D  and m  known, single species). 
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Figure 13.  SC-µRPA CCT results for Carbon. 
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Figure 14.  SC-µRPA CCT results for Xenon.
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