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Abstract: A parallel, three-dimensional electrostatic PIC code is developed for large-
scale electric propulsion simulations using parallel supercomputers. Two algorithms are
implemented in the code, a standard finite-difference (FD) PIC and a newly developed
immersed-finite-element (IFE) PIC. The IFE-PIC is designed to handle complex bound-
ary conditions accurately while maintaining the computational speed of the standard PIC
code. Domain decomposition is used in both field solve and particle push to divide the
computation among processors. Two simulations studies are presented to demonstrate the
capability of the code. The first is a high-resolution simulation of multiple ion thruster
plume interactions for a realistic spacecraft using a domain enclosing the entire solar array
panel. The second is a full particle simulation of ion beam neutralizer interactions using
real ion to electron mass ratio. The IFE-PIC and FD-PIC run with similar overall speed
and the IFE-PIC achieves a high parallel efficiency of ≥ 90%.

I. Introduction

There have been significant progress in modelling and simulation studies in support of electric propulsion
research activities in recent years. There are two classes of models. The first class of models is system level
engineering tools designed to produce quick estimations. The second class of models is first-principle based
simulation models which attempts to simulate the detailed physics using fundamental physics laws with few
assumptions. Particle-in-Cell (PIC) has emerged as the most appropriate algorithm for first-principle based
modelling of many ion propulsion problems. Numerous particle simulation models have been developed.

A PIC code models a plasma as many macro-particles and follows the evolution of the orbits of individual
test particles in the self-consistent electromagnetic field1,5.While the particle simulation method allows one to
study a problem from the very fundamental level, the scope of the physics that can be resolved in a simulation
study critically depends on the computational power. The computational time/cost and computer memory
size restricts the time scale, spatial scale, and number of particles that can be used in a simulation. Due
to computational limitations, particle simulation studies of electric propulsion are typically performed using
relatively small simulation domains with simplified spacecraft or thruster configurations. Hence, existing
particle simulation models of electric propulsion are mostly used as research tools rather than engineering
tools.

Recent advances in massively parallel supercomputers have provided computational possibilities that were
previously not conceivable. While parallel computing is increasingly being adopted in simulation studies, it
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has rarely been used in electric propulsion simulations due to specific difficulties associated with the parallel
implementation.

Most electric propulsion simulation studies concern electrostatic problems with complex internal bound-
ary conditions imposed by the thruster or spacecraft inside the simulation domain. A major challenge in
applying parallel computing in electric propulsion simulation is to develop a highly efficient electrostatic PIC
code involving complex boundary conditions. Previously, various 3-D electrostatic and electromagnetic PIC
codes have been implemented on parallel supercomputers. Domain decomposition is typically used to divide
the computations among processors. To minimize the overhead of inter-processor communications, almost
all parallel PIC code are designed to use a local, non-iterative method to solve the electric or electromagnetic
fields, such as the fast Fourier transform (FFT) method or the finite-difference time-domain (FDTD) method
or discrete-volume time-domain method. High parallel efficiencies have been demonstrated for PIC codes
using such field solution techniques. For instance, Wang et al have developed parallel 3-D electromagnetic
PIC codes using FDTD11 and discrete-volume time-domain with non-orthogonal grids13 and achieved a
parallel efficiency of ≥ 95% for both codes using 512 processors. However, a local, non-iterative field solve
method cannot be used in electric propulsion simulations because of the elliptical nature of the Poisson’s
equation and the complex internal boundaries. Rather, one must solve the Poisson’s equation using a global,
iterative method. An unstructured mesh is also typically needed to body fit the object boundary. Developing
such a field solver with high parallel efficiency has been a difficult issue in the parallel implementation of
electrostatic PIC codes.

This paper presents a particle simulation code developed for large-scale, 3-dimensional electric propulsion
simulations using parallel supercomputers. The parallel code presented here incorporates a newly developed
immersed-finite-element (IFE) algorithm6. The IFE method allows one to use a structured mesh, even a
Cartesian mesh, to solve the electric field involving arbitrarily shaped boundary conditions at an accuracy
comparable to that of the standard finite element method using a body-fit unstructured mesh. This approach
retains the computing speed of a standard PIC code without losing accuracy as well as allows an easy
implement on parallel computers using domain decomposition. For comparison, a standard finite-difference
(FD) algorithm is also implemented in the PIC code. We show that both the FD based and IFE based
parallel PIC codes run with a high parallel efficiency.

We present two ion propulsion simulation studies in this paper. The first study is a large-scale 3-D sim-
ulation of multiple ion thruster plumes. Computational constraints have limited existing plume simulations
to simple spacecraft configuration and small simulation domain. The simulation presented here considers a
realistic spacecraft configuration, modelled after the DAWN spacecraft, with three ion thrusters. Simulation
is performed using a domain sufficiently large to enclose the entire spacecraft and the solar array panel
with a high mesh resolution to resolve the Debye length near the solar array panel. The second study is
a preliminary simulation of near-thruster plume and ion beam neutralization. Due to computational con-
straints, almost all PIC models for ion propulsion use the hybrid approach where only the ions are treated
as particles and electrons are simplified using various assumptions. Computational costs have prohibited
ion propulsion simulations using the full particle approach with real ion to electron mass ratio. As a result,
the interaction between ion beam and neutralizer electrons has not been modelled in detail and the physics
underlying the ion beam neutralization process is still not well understood. The simulation presented here
is one of the first attempts to resolve the ion beam neutralizer interactions. It treats both ions and electrons
as marco-particles, uses the real ion to electron mass ratio, and runs the simulation based on electron time
scales.

Section II briefly discusses the algorithm and parallel implementation. Section III presents results from
the two simulation studies. Section IV presents performance benchmarks of running the parallel code on a
Dell cluster. Section V contains a summary and conclusions.

II. A Parallel PIC Code for Ion Propulsion

A. Algorithm

The basic function of a PIC code is to solve the electrostatic field self-consistently with the boundary
condition and the space charge of the particles from the Poisson’s equation

∇ · (ε0∇Φ) = e(ne − ni) . (1)
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and the trajectories of each charged particle from Newton’s second law

d

dt
(mv) = F = qE , v =

dx
dt

. (2)

As particle can be located anywhere in the simulation domain while the field quantities are only defined
on mesh points, a PIC also involves two particle-mesh interpolation steps, a gather step to interpolate
field quantities from mesh points to particle location and a scatter step to deposit particle charge to mesh
points. Depending on specific applications, one may choose to use either the full particle approach where
both the electrons and ions are treated as macro-particles or a hybrid approach where the electron density
ne is obtained by solving the fluid equation or other simplifications. A commonly used approximation in
ion thruster plume simulation model is to use the Boltzmann approximation ne ' no exp((Φ − Φo)/Te) for
electrons. Both the full particle PIC and the hybrid PIC with Boltzmann electrons are implemented in the
code presented here.

A major challenge in the application of PIC codes on engineering problems, including electric propulsion,
is the boundary condition involving complex plasma-material interface. Complex geometries are usually
best handled by a body-fit mesh using tetrahedral cells or unstructured meshes. However, a tetrahedral
cell based or unstructured mesh based particle code can be significantly computationally more expensive
than a standard orthogonal mesh PIC code. In a standard orthogonal mesh PIC code, the location of
memory of quantities defined in neighboring cells can be found trivially via indexing. This is in contrast
to an unstructured mesh where the neighbors of a given cell must be found by lookups in a table or other
methods requiring additional memory references and computation time. Moreover, for either tetrahedral
cells or unstructured meshes, a fairly complex scheme is typically needed to determine a particle’s new cell.
These added complexities can make large-scale 3-D simulations prohibitively expansive computationally13.
On the other hand, a finite difference method based field solver using the Cartesian meshes is susceptible of
losing accuracy in the fields in the vicinity of a irregular boundary.

Recently, a new PIC algorithm based on the use of an immersed-finite-element (IFE) formulation was
developed for PIC simulations involving complex plasma-material interface6,7 The primary attraction of the
IFE formulation is that it allows one to use a numerical mesh without consideration of the interface location.
In particular, a Cartesian mesh can be used in the IFE space to solve a problem involving a complicated
interface. The IFE-PIC algorithm uses a structured Cartesian-tetrahedral mesh (Figure 1). The Cartesian
mesh is the primary mesh used by PIC. Each Cartesian cell is further divided into five tetrahedral elements.
The tetrahedral mesh is the secondary mesh used only by the IFE field solver. The IFE-PIC algorithm
has been applied in simulation studies of whole subscale ion optics7 and ion thruster plumes15. It is shown
that the IFE-PIC approach has the capability to handle complex boundary conditions accurately while
maintaining the computational speed of a standard PIC code. Both the newly developed IFE-PIC algorithm
and the standard finite-difference based PIC algorithm (FD-PIC) are implemented in the code presented
here.

B. Parallel Implementation

Both the IFE-PIC and FD-PIC algorithms are parallelized using domain decomposition using the General
Concurrent PIC (GCPIC) approach8 Each processor is assigned a subdomain and all the particles and grid
points in it. When a particle moves from one subdomain to another, it must be passed to the appropriate
processors, which requires interprocessor communication. To ensure that the gather/scatter can be per-
formed locally, each processor also stores guard cells (e.g. neighboring grid points surrounding a processor’s
subdomain which belong to another processor’s subdomain. Interprocessor communication is necessary to
exchange guard cell information. The GCPIC approach has been applied in various large-scale PIC sim-
ulations with high parallel efficiency (see, for example, Wang et al11,12,13 and references therein). As the
IFE-PIC is based on the use of a Cartesian based tetrahedral mesh and the particles are pushed only in
the Cartesian mesh, domain decomposition for IFE-PIC is the same as the FD-PIC. The message passing
interface (MPI) is used for interprocessor communications.

For the specific applications considered in this paper, we utilize two legacy sequential PIC models de-
veloped by Wang for electric propulsion applications. The first model is a 3-D hybrid PIC model of ion
thruster plume developed for the Deep Space 1 mission14. This model has shown excellent agreement with
in-flight measurements from Deep Space 1. The incorporation of the IFE formulation into the model have
significantly increased the model’s capability on handling complex spacecraft configuration. The second
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model is a 3-D full-particle PIC model developed to study ion and electron beam emissions9,10.This model
setup is modified to study near-thruster plume interactions and ion beam neutralizations in this paper.

1. Parallel IFE Field Solver

The parallel implementation of the IFE field solver is significantly more involved than the finite difference
based field solver. In the code, the IFE mesh as well as the mesh-object intersections are generated locally for
each sub-domain. To account for the assembly of the local finite element system on the elements at subdomain
boundaries, the subdomain IFE mesh extends to include the guard cells from neighboring processors. The
subdomain IFE mesh nodes are classified as local nodes (the nodes that are assigned to the current processor)
and external nodes (the adjacent nodes assigned to neighboring processors). Local nodes are further classified
as local internal nodes (the nodes that have no connectivity with external nodes), and local boundary nodes
(the nodes that have element connectivity with external nodes). Figure 2 illustrates domain decomposition
of the IFE mesh and node classification.

The finite element system is constructed and stored locally, i.e. on local nodes. The application of the
preconditioned-conjugate gradient solver inside the IFE solver requires the parallel implementation of vector-
vector inner products and matrix-vector products. The inner products of local vectors are first performed by
each processor, and then the local inner products are all summed over all processors. The implementation of
matrix-vector multiplications is more cumbersome. The local stiffness matrix, or mass matrix, is divided into
three sub-matrices: local sub-stiffness matrix (which include the entries associated with inter-connectivity
of local nodes), external sub-stiffness matrix (which includes entries associated with the connectivity of local
boundary nodes with external nodes), and zero matrix (which includes zero entries). Figure 3 illustrates
these subdivisions of the stiffness matrix. During matrix-vector multiplication, the local sub-stiffness matrix
is multiplied with the associated local vectors, the external sub-stiffness matrix is multiplied with the vectors
associated with external nodes, and the zero matrix is simply ignored. Communication among neighboring
processors is required to send information from local boundary nodes, and receive information from external
nodes.

2. Parallel PIC

The construction of the parallel code includes the development of a parallel IFE field solver, a parallel FD
field solver, and parallel implementation of the problem setup and PIC components of the legacy sequential
PIC codes. The parallel implementation of PIC is carried out using the UCLA Parallel PIC Framework
(UPIC)4. The UPIC Framework provides the common components that many PIC codes share, making
use of object-oriented design in Fortran95. The Framework supports multiple numerical methods, different
physics approximations, different numerical optimizations and implementations on different hardware. It is
designed to hide the complexity of parallel processing and with ”defensive” programming in mind, meaning
that it contains many error checks and debugging helps. The UPIC Framework has been used to build a
number of new parallel PIC codes. The parallel implementation is done through the merger of software
from the UPIC Framework and software specifically written by Wang and students for Electric Propulsion.
Specific components from UPIC were customized for this new code, primarily those involving management
of particles on parallel processors. Only 1-dimensional domain decomposition is implemented in the current
version of the code.

III. Ion Propulsion Simulations Using Parallel Computer

The section presents results of two ion propulsion simulations from using the parallel PIC code. The first
study concerns the induced plasma environment for a spacecraft with multiple ion thrusters. Simulations
are performed for a sophisticated spacecraft configuration and using a large simulation domain enclosing the
entire solar array panel with a high mesh resolution. The second study concerns near-thruster plumes and
the beam neutralization processes. Simulations are performed using the real ion to electron mass ratio. Both
simulations are almost impossible to carry out on regular computers due to the memory and computational
time required. Results presented here are obtained from simulations on a scalable distributed-memory
parallel processor system, the Dell Xeon cluster at the Jet Propulsion Laboratory. The section presents
simulation results.
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A. High-Resolution Simulations of Multiple Ion Thruster Plume Interactions

We first consider ion thruster plume interactions for a spacecraft with multiple thrusters. The IFE-PIC
version of the code is used in this study to accurately resolve the boundary conditions at the spacecraft
surface. The model formulation is the same as that described in Wang et al.14. As the focus here is the
charge-exchange ion backflow, only the charge-exchange (CEX) ions are treated as particles. The electrons
density is modelled by the Boltzmann distribution. The density distribution of the propellant beam ions
nb(x) and the neutrals nn(x) are modelled by analytical profiles. Charge-exchange ions are introduced into
the simulation domain according to nb, nn, beam ion velocity vb, and the charge-exchange collision cross
section σcex:

dncex

dt
= nb(x)nn(x)vbσcex

.
The spacecraft is taken to have a configuration similar to the DAWN spacecraft, a cube with a side length

of about 1.3m plus a spherical antenna dish, a solar array, and some payloads, and three ion thrusters. The
ion thrusters are assumed to be the 30cm diameter NSTAR ion thruster. Similar to [Wang et al., 2001], the
input parameters for charge-exchange simulation include the ion beam density and neutral plume density at
thruster exit (derived from DS1 ion engine operating condition for ML 83), the potential difference between
the plume and spacecraft ground and the electron temperature in the plume (assumed to have the values
measured by DS1 IDS instrument), and charge-exchange collision cross section. The spacecraft surface is
assumed to have a uniform potential distribution equal to the spacecraft ground. Details of these values are
given in Wang et al.14.

The simulations presented here is intended for a follow up study to model ion thruster plume interactions
with the solar array. Hence, the simulation domain is taken to be sufficiently large to enclose the entire
solar array panel and the mesh resolution is taken to be sufficiently high to resolve the Debye length of the
CEX plasma in the wake region. The spacecraft model and the simulation mesh are shown in Figure 4. Due
to the symmetry, we only need to simulate of the spacecraft configuration. Domain decomposition is along
the z direction. The PIC mesh is a uniform Cartesian mesh of cells. Each PIC cell is further divided into
5 tetrahedral elements in the IFE field solver. The size of the simulation domain is 9.3m × 9.3m × 15.4m.
Based on our previous simulations of the NSTAR ion thruster plume, the PIC cell size is taken to be a 6cm
cube. The total number of PIC cells in the simulation domain is 155 × 155 × 256 (more than 6.15 million
cells). The entire IFE mesh has 30,752,000 tetrahedral elements. The simulation presented here typically
uses 12.5 million particles.

We have performed this simulation using 8, 16, 32, and 64 processor of the JPL Dell Xeon cluster. The
total computational time required for this simulation depends on the number of processors used and how
the simulation is performed. For instance, a full transient to steady state simulation resolving CEX plasma
propagation from the start of thruster firing requires field update at every PIC step. Such a simulation
takes about 10hrs on 64 processors for 1000 PIC steps (Steady state is reached at about 900 PIC steps).
On the hand, if one is only interested in the steady state result, one could choose to perform an accelerated
simulation with field update at intervals of PIC steps. Such a simulation could finish in a little more than
2hrs on 64 processors instead. More performance benchmarks will be discussed in the next section.

The steady state potential contours and CEX ion density contours for three-thruster firing are shown
in Figure 5. Due to the large ion density variations, the CEX ion density contours are shown only for the
range up to 1.5 × 106cm−3. It was shown that CEX backflow is through an expansion process similar to
that of a mesothermal plasma expansion into a vacuum14. Results presented here show the same expansion
characteristics although the detailed CEX plume structure is more complex than single thruster firing.
Additionally, the presence of the antenna dish enhances the backflow, as the antenna is assumed to have the
spacecraft ground potential.

B. Full Particle Simulations of Ion Beam Neutralizer Interactions

We next discuss a preliminary simulate of ion thruster plume in the near-thruster region. As the focus here
is the detailed electron dynamics and ion electron mixing process, we shall only include a simplified thruster
in the simulation domain. The FD-PIC version of the code is used in this study.

Although ion beam neutralization is readily achieved in experiments, our understanding of the underlying
physics has remained mostly at the level of “electrons are attracted to ions by the Coulomb’s force”. The ion
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beam neutralization process not only is an interesting physics problem but also has practical implications in
electric propulsion. For instance, an understanding of ion beam neutralization is important in the design of
ion thruster clusters with a single shared neutralizer as well as in understanding of the effects of cathode plume
model operation. Very few studies have attempted to simulate this problem primarily due to computational
constraints2,3,16. This is because, in order to simulate the physics correctly, such simulations must be carried
out using an ion to electron mass ratio very close to the real mass ratio (and thus extremely small time steps
for ion motion) and using a very large simulation domain to minimize the effects of the simulation boundary.

The simulation setup is shown in Figure 6. Both the thruster firing direction and domain decomposition
is along the z direction. The thruster exit has a curved beam emission surface with a divergence angle of
∼ 19o. We consider two different simulation cases. In case 1, we assume that the ions and the electrons
have already mix properly. The purpose of case 1 is to analyze the electron distributions in a neutralized ion
beam. In case 1, both the ions and electrons are injected into the simulation domain from the beam emission
surface at thruster exit with a drifting Maxwellian distribution. In case 2, we attempt to simulate the ion
and electron mixing process. Hence, in case 2, the electrons are injected into the simulation domain from the
neutralizer cathode with a Maxwellian distribution. To minimize the effects of the boundary, the thruster
is placed in the middle of the simulation domain with a 0 volt potential. There is no potential difference
between the thruster body and the neutralizer. Electron and ion mixing occurs entirely through the electric
field of the space charge. Due to symmetry, we only need to simulate 1/4 of the configuration in case 1 and
1/2 of the configuration in case 2.

The electrons are assumed to have an initial drifting Maxwellian distribution with a temperature of
Te = 2eV. The ions are assumed to have an initial drifting Maxwellian distribution with a temperature of
Ti = 0.1eV. To speed up the simulation, we use the mass ratio of proton to electron, mi/me ' 1836. Even
using the parallel computer, simulations still need to be performed for “scaled-down” problems. The mesh
resolution is taken to be the Debye length λ − D at the thruster exit. The PIC mesh for case 1 is taken
to be 60 × 60 × 256. The PIC mesh for case 2 is taken to be 121 × 60 × 256. The ion beam exit radius is
taken to be rb/λD = 13 and the thruster body radius is taken to be rT /λD = 15.5. (If the thruster in the
simulation had a real physical dimension of the 30cm diameter NSTAR thruster, the simulation parameters
would correspond to a pseudo operating condition that generates a beam ion density of ∼ 106cm−3 at the
NSTAR thruster exit.)

As ion beam neutralizer interaction occurs very close to the thruster exit, we concentrate on the region
within one thruster diameter. Results for case 1 are shown in Figures 7 and 8. In Figure 7, we show the
snapshot of the potential contours (left panel) and ion and electron density contours (right panel) at the time
when the ion beam reaches beyond one thruster diameter. The contours are shown on a z-x plane cutting
through the thruster center. For comparison On the right panel of Figure 7, the electron density is plotted
on the left half of the panel while the ion density is plotted on the right half of the panel. Results of Figure
7 shows a nicely neutralized ion beam with electrons confined within the ion beam. The electron and ion
positions on a z-x plane cutting through the thruster center are shown in the left panel of Figure 8. The
electron distribution functions for the velocity component vx, fe(vx) at different downstream locations from
the thruster exit are shown on the right panel of Figure 8. The distributions functions are calculated for
electrons within every 4 cells along the z direction. Figure 8 shows that the electrons in a neutralized beam
maintain their initial distributions. Results for case 2 are shown Figures 9 through 11. As this simulation is
extremely time consuming, the results shown is for a very early stage of ion thruster firing (within a transient
time period when the beam ions only reach about half the thruster diameter). Figure 9 shows the potential
contours and charge density contours (only plotted for positive charge). Figure 10 shows the electron and
ion positions where the mixing of electrons and ions is evident. Figure 11 shows the electron distribution
functions for the velocity components vx and vz at different downstream locations from the thruster exit.
Again, the distribution functions are calculated for electrons within every 4 cells along the z direction. Figure
11 clearly shows that electrons undergo acceleration and heating during the neutralization process.

IV. Performance Benchmarks

The Dell Xeon cluster at JPL is used for simulations presented in this paper. This section presents
performance benchmarks of this parallel PIC code on this parallel computer. The Dell Xeon cluster, shown
in Figure 12, has 1024 Intel Pentium 4 Xenon processors (3.2GHz), with 2GB memory per CPU. The total
memory of the system is 2TB and the theoretical peak speed is 6.55 TFLOPS. The cluster supports parallel
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programming with the message passing interface (MPI) and runs the Linux operating system.
The performance of the code is measured using ”fixed problem size” analysis, where we compare the

times to run the same size problem on an increasing number of processors. The multiple thruster plume
simulation discussed in Section III-A is used for this analysis. For comparison, we have run the same problem
using both the IFE-PIC and FD-PIC versions of the code. The simulations are run using 8, 16, 32, and 64
processors.

To analyze the performance of the code, we have measured the total code time per time step loop Ttot

as well as the times spent by each major functions of the code. Let us denote Tmove , Tdeposit, Tfield, as
the total time spent by the code on particle move, charge deposit, and field solve respectively. We define the
particle push time as

Tpush = Tmove + Tdeposit (3)

Hence
Ttot = Tmove + Tdeposit + Tfield = Tpush + Tfield (4)

Since each processor runs the code with slightly different times, the times measured are the maximum
processor times among all processors used. Hence, there will be a small difference between the measured
Ttot and the value of Tmove + Tdeposit + Tfield. Moveover, since the clock calls introduce synchronization,
the measured times presented here are slightly longer than the times spent by the code with all subroutine
clocks turned off.

The particle move, charge deposit, and field solve functions of the code all require inter-processor com-
munications and related processing. The times spent on these functions represent the overhead for using
parallel processing. We denote T com

push as the times spent on trading particles and exchange guard cells and
related inter-processor communication by particle move and charge deposit. We denote T com

field as the time
spent on processing subdomain boundary conditions and related inter-processor communications by field
solve. Hence, the total overhead for parallel processing is

T com
tot = T com

push + T com
field (5)

To measure of the communication overhead, we define the parallel efficiency of particle push and field solve
as

ηpush =
Tpush − T com

push

Tpush
, ηfield =

Tfield − T com
field

Tfield
(6)

and the overall parallel efficiency of the code as

η =
Ttot − T com

tot

Ttot
(7)

The measured Tpush, Tfield, and Ttot are shown on the left column of Figure 13 and the ηpush, ηfield, and
η are shown on the right column. The simulations performed is a fully transient plume simulation where the
number of macro-particles increases gradually as the simulation progresses and the field is updated at every
time step. The times shown are measured during the relative early stage of the simulation, between 151 to
200 PIC steps. (The steady state is reached after 900 steps). During this time period, Tpush dominates Ttot

because of the relatively small number of particles inside the simulation domain. The performance of the
code and the efficiency of the code improves as more particles are introduced into the simulation domain.

Both the IFE-PIC and the FD-PIC runs at similar speed. Comparing the IFE solver and the FD solver,
the FD solver spends less time on computations but more time on inter-processor communications. For this
particular application, the IFE-PIC runs with high parallel efficiency with η ≥ 90%. The performance of
the code may be further characterized by particle push time per particle per time step, tpush, and field solve
time per cell per time step, tfield. Once the simulation has reached a steady state (PIC steps 900 through
1000), the IFE-PIC code runs at a speed of tpush ' 156 ns/particle/step and tfield ' 4690ns/cell/step using
64 processors.

V. Summary

In summary, a parallel, three-dimensional electrostatic PIC code is developed for large-scale electric
propulsion simulations using parallel supercomputers. Two algorithms are implemented in the code, a
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standard FD-PIC and a newly developed IFE-PIC. The IFE-PIC is designed to handle complex bound-
ary conditions accurately while maintaining the computational speed of the standard PIC code. Two ion
propulsion simulation studies are carried out using the parallel PIC code. In the first simulation, the parallel
IFE-PIC is used to study multiple ion thruster plume interactions with a realistic spacecraft. Simulation is
performed using a domain sufficiently large to enclose the entire spacecraft and the solar array panel with a
high mesh resolution to resolve the Debye length near the solar array panel. In the second simulation, the
parallel FD-PIC is used to study ion beam-neutralizer interactions. Full particle simulations are performed
using the real ion to electron mass ratio. Performance benchmarks of both the IFE-PIC and FD-PIC are
measured on the Dell Xenon cluster. Both the IFE-PIC and FD-PIC runs at similar overall speeds for the
same problem. In particular, we observe that the IFE-PIC runs with a high parallel efficiency of ≥ 90%, a
particle push speed of ∼ 156ns/particle/step, and a field solve speed of ∼ 4690ns/cell/step on 64 processors
on the Dell cluster.
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Figure  3:  Illustration of subdivisions of the stiff matrix and matrix-vector multiplications 

Figure 2:   Domain decomposition of the IFE mesh and node classification
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Fig. 1:   The Cartesian-tetrahedral mesh used by IFE-PIC 



Figure 4: Spacecraft model and domain decomposition for multiple-thruster plume simulations  

Figure 5: Normalized potential & ion density contours (Three Thruster Firing).  The 
potential is normalized by Te=5V. The ion density is normalized by n=0.75x105 /cm3



Figure 6: Setup and domain decomposition for near-thruster plume simulation case 1 (left) and case 2 (right)

Figure 7: Normalized potential contours (left) & electron and ion density contours (right)  for case 1. The 
potential is normalized by Te=2eV.  On the right panel: electron density is shown on the left half and ion 
density is shown on the right half panel.
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Figure 8: Left: Ion (red) and electron (blue) positions; Right: electron distribution functions for case 1. 
Vx is normalized by electron thermal speed (Te/me)1/2
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Figure 9: Potential contours (left) & charge density contours (right)  for case 2. The potential is normalized 
by Te=2eV.  The charge density on the right panel is only shown for positive values.

Figure 10: Ion (red) and electron (blue) positions for case 2 

Figure 11: Electron distribution functions for case 2. Vx and Vz are  normalized by electron 
thermal speed (Te/me)1/2
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Figure 13: Performance of the parallel IFE-PIC and FD-PIC codes for simulation of the same multiple thruster plume 
case using 8, 16, 32, and 64 processors of the JPL Dell Xeon cluster.  Left column: field solve, particle push, and total 
time measured for PIC time steps from 151 to 200. Right column: parallel efficiencies of field solve, particle push, and 
total code performance measured during the same period.
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Figure 12: The Dell Xeon cluster at JPL
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