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Nomenclature

g

particle velocity

velocity distribution function
relative velocity vector
relative velocity

particle density

time

spatial coordinates vector
diffusion tensor

friction force vector
Boltzmann’s H-function
Rosenbluth potentials
associated diffusion tensor
At time step size

dW, AW Wiener increment
Greek Symbols

volin e ST w TR IR S EE
Q

I mean value

o? variance

Oij collision cross section
T time constant

Q solid angle
Constants

I'p plasma parameter
Subscripts

col Collisions

e electron

i, ] species indices
Abbreviations

BG background

DSMC Direct Simulation Monte Carlo

FFT Fast Fourier Transformation

FP Fokker Planck

HLRS Hochstleistungsrechenzentrum Stuttgart
TAG Institut fiir Aerodynamik und Gasdynamik
IHM Institut fiir Hochleistungsimpuls und Mikrowellentechnik
IRS  Institut fiir Raumfahrtsysteme

PIC  Particle in Cell

PPT Pulsed Plasma Thruster

SDE Stochastical Differential Equation
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I. Introduction

In order to model electric propulsion systems like PPT, a cooperation between several institutes of
Stuttgart University (IRS, IAG and HLRS) and Research Center Karlsruhe (IHM) has been formed to
develop the hybrid PIC/DSMC code named PicLas™“ This code solves the Boltzmann equation for different
physical regimes, to simulate the rarefied, non-continuum plasma flow in the thrusters. To include the
relevant physics, the PIC scheme developed by THM## is being extended by adding models for intra- and
inter- species charged particle collisions and intermolecular reactions (see Figure ). The block diagram in
FigureMillustrates schematically the working principles of the new code. The Maxwell-Vlasov solver models
the interactions between charged particles and electromagnetic fields. Momentum and energy exchanges,
without consideration of Lorentz force, as well as chemical reactions are treated in DSMC block, by means of
a DSMC method based on the previous “LasVegas” code.” Finally, the effects of electrons and ions collisions
on their velocity field are evaluated in the completely new Fokker-Planck solver, which adopts PIC techniques
in velocity space. The integration of these three models is expected to allow for an accurate prediction of the
behaviour of electric space propulsion systems operating far from continuum hypotheses. Additionally, the
necessity of a three dimensional and time accurate description and complex geometries requires optimization
and parallelization of the code in order to efficiently use high performance computers.

The general program structure of the coupled code PicLas allows for a flexible combination of the different
modules which will be run in parallel mode, each to contribute to the final AV.

Localization,
Boundary Cond.

Y

Maxwell-Vlasov
(AV)MV (AV)DSMC

Y Y
DSMC Fokker—Planck

(av)ep

At

Particle Push

X,V
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Figure 1. Schematic view of the coupling concept

The interplay of the different building blocks will be investigated and analyzed in detail. Due to the
multi-scale nature of the problem, the requirements for time step size, mesh size w.r.t. mean free path
length, the maximum or minimum number of particles per cell might be competing, and systemic rules for
stable, accurate settings are under development.

In the present paper, we focus our attention to the Fokker-Planck building bock where the electron-electron
collisions — abbreviated by (e,e) — and electron-ion collisions — abbreviated by (e,I) — in the plasma under
consideration are treated. We assume that the electron density is of the order of 10'® m~3, which means
that the (e,e)-collision frequency exceeds the one of electron-neutral collisons. It is obvious that in such
plasmas the shape of the electron energy distribution function (EEDF) is mainly determined by the (e,e)-
interactions. In the case where the energy input into the plasma goes primarily into the thermal part of the
EEDF, the high-energy tail is mainly populated by energy up-scattered electrons caused by (e,e)-collisions,
which always drive the EEDF towards a Maxwellian distribution. Deviation from such ideal behaviour are
caused for example, by inelastic electron-neutral collisions which deplete the high energy tail, and in bounded
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plasmas whose walls the fastest electrons can escape through. Furthermore, energetic considerations indicate
that the high-energy tail controls reactions like atomic excitation and ionization, and to some extent the
plasma chemistry. Clearly, since the EEDF determines many properties of the plasma, it is essential to model
(e,e)-collisions as realistic as possible. In the following, we describe the formulation that allows to include
(e,e)-collisions into a PIC framework in a natural way. Therefore, in Section [l the governing equations and
the numerical framework are introduced. Results obtained from several numerical experiments are presented
in Section [l and finally, a short summary and an outlook of our further activities are given in Section [M

II. Mathematical and Numerical Modelling of Coulomb Interaction

In order to describe the non-continuum plasma flow in the thruster, a general starting point is the
Boltzmann equation, which describes the change of the velocity distribution f; for the specie “/” in time
and phase space as a result of external forces and particle collisions. To determine the transient, local
velocity distribution function, the different contributions to the Boltzmann equation are decoupled and
treated separately according to the physical situation on hand. In this context we are concerned with the
rate of change of f; over time due only to collisions. The Boltzmann collision integral® reads as

51' - = - i 7 =/ - - —
(5—{;> =Y [ 906 (.53 [£CD 5 ~ 516 £3(@) ] ands; &
Col j

Wy

Here, the index j stands for all “scattering” populations, n; = n;(Z,t) is the density of species “;j”, § = & —¢;
represents the difference between the velocity ¢ of the scattered-off electrons and the velocity of the electrons
that serve as scatterers, 0;;(g,q - §’) is the differential scattering cross section between the particles of the
species “¢” and “j”, and the differential solid angle df? is given by df2 = sin 0 df d¢. The primed quantities
refer to the value after a collision and the unprimed ones denote the pre—collisional values.

In order to consider exclusively elastic intra-species long range electron-electron and ion-ion collisions as
well as elastic inter-species electron-ion Coulomb scattering it is sufficient to use the Fokker-Planck equation
to approximate the collision integral [M). Clearly, in this case o;;(g,6) is given by the classical Rutherford
differential cross section (see, for instance Ref), where 6 is the scattering angle.

A. The Fokker-Planck Equation

For sake of clarity, we restrict the following analysis to the case of intra-species collisions only, in particular
(e-e), since the electron-ion interactions can be derived straightforeward® The Fokker-Planck equation

(%)001 = V. [Fr]+ 5V [VZ (D fe)]T , (2)

T

with V., = (6/801,8/802,0/803) describes the evolution of the electron distribution function f. =
fe(#,¢,t) as a result of small-angle scattering of Coulomb point particles, and represents the lowest or-
der approximation of the Boltzmann collision integral ™% The components of the friction force (or drift)
vector I and the diffusion tensor D € R3*? are given by

OH
Fa(f,at)zfpne(f,t)a— , a=1,2,3 (3)
Ca
and
Dygs(Z,¢t)=T (%, t) G B3=1,2,3 (4)
Z,Gt) =T pne(r a,B =
af\L, €y P Tle\ Ly 3ca86g ’ ) 34y,
respectively, where n.(Z, t) is the local electron density and I'p = ﬁ In(A) denotes the plasma parameter
0"
with the Coulomb logarithm In(A) (see, e.g. Ref.®). The key quantities to compute these coefficients
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are the Rosenbluth potentials” which are defined according to

H(E, 6 t) =2 / @w gt fu(@ @ 1) and  G(FE1) = / w gl fu(@,1) . 5)

Clearly, the friction force F and the diffusion tensor D themselves depend on the velocity ¢ and, hence, the
FP model generally is a complicated non-linear problem that has to be solved numerically in an appropriate
— namely, self-consistent — manner. The direct numerical solution of the FP equation can now be performed,
and at the end of this paragraph we will make clear the link between such a procedure and the desired PIC
method.™ Tt is well known that the assumption of an isotropic but non-Maxwellian velocity distribution of
the scatterer implies an enormous reduction of the problem since the diffusion and friction coefficients can
be written in terms of one-dimensional quadratures.®"%%¥ However, in cases where no model assumptions
concerning the distribution function can be imposed, a 3D quadrature formula would be very time consuming.
A deeper observation of () reveals that the Rosenbluth potentials are convolutions of the scatter distribution
functions and of the absolute value of the relative speed. This suggest to apply Fourier transformation
techniques to compute the integrals, where no model assumptions concerning the distribution function have
to be imposed. After some standard manipulations,™* we obtain the results

H(E) = SWFI{%E)} (6)

G :—877?1{%9}, (7)

where the identity V2g = 2/g has been used to obtain the second relation and F~! denotes the inverse
Fourier transformation of the arguments in the braces. Clearly, the argument of () reveals the convolution

character of first expression in (@), which means that we get in E—space the product of the Fourier transform
A o oo .7
fe(k) = (2m)~%/% [ dPce™*€ f,() and 1/k?, which is the Fourier transformation of the “Coulomb potential”

—0o0
1/g. Since the derivatives of the Rosenbluth potentials enter into the determinations (@) and @), we apply
the differentiation property of the Fourier transformation and find immediately

ko » = 2 ko k -
g—z = smj-‘l{ 2 fe (k)} and 625% = 87r7-‘1{ 5 fe(k)} (8)
Note, that such a determination of the derivatives may considerable reduce "computational noise" which is
often associated with finite difference differentiation on the velocity grid.

In essence, the main advantage of the Fourier approach is that we obtain a first principle, fully self-consistent
determination of the deterministic friction and stochastic diffusion arising in @) since no specific model as-
sumptions are necessary to compute the Rosenbluth potentials. Consequently, the (e,e)-collisional relaxation
is modeled in a complete self-consistent way. Furthermore, note that the appearence of the FP equation
reveals that the (e,e)-collisions are modeled as a diffusion process that describes the short-time behavior of
the considered system .

and

Making use of the It formula™ " one can show that the FP equation @) for the evolution of f. is equivalent

to the stochastical differential equation (SDE) of Langevin-type
dC(t) = F(C,t)dt + B(C,t) dW(t) , (9)

where W (t) € R® represents the three-dimensional Wiener process and the matrix B € R3*3 is related to
the diffusion matrix according to D = BB7. As indicated, both quantities F and B now depend on the
stochastic variable C = C/(t), which will be identified later as the velocity of the (macro) electrons. We
remark that the Langevin-type equation takes the role of the deterministic Lorentz equation in the classical
PIC approach, but for numerical purposes this equation has to be discretized within the framework of
stochastic calculus. Hence, the use of the Langevin-type SDE (@) fits in a remarkable way into the standard
PIC approach,® which is one basic concept of the PicLas code development.
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B. Numerical Framework: The PIC Approach

The numerical solution of the FP equation is illustrated in the block diagram below. The analogy with
classical PIC concept is immediately evident: One part of the cycle is situated in a mesh-free zone, while
another one needs a discretization grid, with two interfaces procedures closing the whole calculation.

Mesh-free
Langevin Solver ,,/”
(F, D)p4 AVpn N
Reconstruction
n
Vp — f(Vj)

-
-

Interpolation

(F, D) — (F, D),
i p Rosenbluth Solver
-7 f(VJ) - (F! D)]

Grid-Based

Figure 2. Building blocks of the PIC approach for the Fokker-Planck equation.

In the following, a short description of the single building blocks of the Fokker-Planck solver is given.
Assignment and Reconstruction. From the actual location of the plasma particles in the three-dimensional
mesh-free velocity space, the distribution function f.(¢) is resolved on the Cartesian velocity mesh. For that,
we apply the volume-weighting technique™®® to compute relative weighting coordinates for each particle
“p” from which individual particle weights ¢(?) can be determined. These particle weights then contain the
necessa.ry information to assign each particle to the corresponding grid cell of the velocity mesh.

Rosenbluth Solver. Afterwards, for the grid-based computations a FFT method similar to the Cooley and
Tukey algorithm™“! is applied to compute the Fourier transform f.(k) of the distribution function f.(c).
Subsequent multiplications of fe(l;) with 1/k2, k,/k?, etc. and a final inverse transformation yields the
grid-based Rosenbluth potentials ) and () and, especially, their derivatives with respect to the velocity
@), from which the components of the friction force vector ) and the diffusion matrix @) can immediately
be determined.

Interpolation. The “Langevin forces”, which are the deterministic friction and the stochastic diffusion, have to
be computed at the actual position of each particle in grid-free velocity space. Since interpolation is nothing
else than the inverse operation of assignment, the particle weights ¢() are once again used to interpolate
the Langevin forces at the position of particle “p” in continuous velocity space (see, for instance Ref &%)
Langevin Solver. Under the action of the velocity- dependent Langevin forces, each particle is moved in velocity
space according to the SDE (@), where appropriate numerical methods are required. For our purposes, we
use weak approximations™ of equation (). Therefore, we perform an Ito-Taylor expansion up to the terms
whose multi-indices belong to a desired hierarchical set. For instance, the simplest multi-dimensional weak
Taylor expansion leads to the Euler scheme®!

3
CmHl = 0" + F(C™, ") At + Z (C" ™) AW (10)

which converges weakly with order 5 = 1.0. Here, by, =B - €4, With unit vector €,, and the Wiener increment
AW is defined according to AW = /At1n,, where At is the time step size and 7, ~ N(0,1) denotes a
Gaussian distributed random number with mean px = 0 and variance 02 = 1. Note, that in the situation of
weak approximation the Gaussian random number AW, can be substituted by a simpler random number
AW which is two-point distributed ™
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The convergence order of the Euler scheme can easily be improved by adding the derivatives of various orders
of the friction and diffusion coefficients which have to be replaced by appropriate approximations.™

This step closes the self-consistent determination cycles, which have to be run through at each time step and
for each spatial grid cell.

I1I. Results

Each single block has been tested in its 3D version separately® providing very good reliability. We present
here the validation of the whole Fokker-Planck module by means of a sequence of numerical experiments
demonstrating the good approximation properties of the introduced schemes. In order to perform a general
investigation about intra-species collisions, all the quantities have been treated as dimensionless quantites.
As reference sizes we considered the mass and charge of electrons with a number density of 10'®* m~3. The
thermal velocity is derived from a Maxwellian distribution function of electrons at a temperature of 10eV.
From these parameters one obtains that one time unit is equivalent to 1.78 - 10~7 seconds.

A. Experiment 1: Reservoir Simulation

For sake of clearness, we consider in the following a single spatial grid cell, in which a sufficient large number
of particles (N, = 3 - 10%) is located, and assume that the computational Cartesian mesh in velocity space
is associated with this local grid zone. The initial state is prepared assigning to each velocity component
a Gaussian velocity distribution all with mean zero but with different variances (temperatures): o7 = 1.0,
o3 = 2.25 and 0% = 4.0. Afterwards, the system evolves through intra-species Coulomb scattering up to
time ¢ = 150, where At = 5-1072. It is well-known that the FP operator acting on f. () is dissipative
in the sense of satisfying Boltzmann’s H-theorem#? In other words a system of charged particles in non-
equilibrium condition evolves in the course of time to its equilibrium conditions and relaxes to a Maxwellian
shaped distribution with positive entropy production. A figure of merit in this context is the local H-function
applied in the form

HE ) = — / B [In £.(6,7,8)] f.(6,7,1) (1)

R3

which can be ascribed to Boltzmann. Obviously, H(Z, t) can be regarded as a measure of the extent to which
the conditions of a system deviate from that corresponding to equilibrium. It can further be shown“® that
when the equilibrium is reached, collisions are not responsible anymore for the rate of change of H(Z,t). The
temporal evolution of the H-function obtained from different numerical experiments are depicted in Figure
Clearly, the H-function measured on the velocity grid with 64 nodes per direction (dashed line) shows an
increasing behavior with time. This artificial warming (the variance increases also; not shown here), almost
linear in time, may be attributed to the "particle sharing" of the nodes and interpolation of the "node values"
to the particles'® As seen in Figure[ it is possible to control this phenomenon to some extent by increasing
the number of grid points (dashed-dotted line: 128 nodes per direction). Now, the increase of H with time
is less pronounced. The remaining increase of H may be led back to the first order approximation of the
assignment and interpolation procedure™ In order to get completely rid of the numerical errors we adapted
the renormalization procedure

. B S O B Cad I
UaHvaf,LL‘i’(Ua*,LL) (O_T,Oé—l,...,Np (12)

originally introduced by Lemons et al”* to cure instability problems arising in finite samples simulations.
Here, ji and (0?) are the desired mean and variance while prime symbol indicate the actual values. The
renormalization () eliminates any instabilizing fluctuations in the moments of f. by linear transforming the
particles velocities without changing the shape of the distributions so that their means and variances recover
the desired values while the system evolves stochastically. As shown by the bold line in Figure Bl no unreal
heating takes place and once the equilibrium is attained the H-function stays — besides small oscillations —
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(line with full squares), 02 (line with full circles) and
o2 (line with full gradients). The lines with open sym-
bols show the mean values of the velocity components

which all stay equal to zero.

constant. This correction assures also that mean energy (temperature) and momentum are conserved during
the simulation.

Further numerical results which are measured from particle quantities are shown in Figure B, where the
correction (@) is now applied. As observed there, the mean values of all velocity components remain
constant (namely zero) since there is no external force to cause a stream motion of the particles. The
diffusion process established by the FP @) (or the Langevin-type () provides, by means of the friction and
diffusion forces, mechanisms that allow internal energy exchanges such that the system reaches the thermal
equilibrium in agreement with the equipartition principle. As long as the system approaches this state, very
small changes take place in the distribution functions form. Even if they are still visible in particle quantities
(Figure Hl ) they can hardly be catched by an integration on grid, resulting in a underestimation of the
relaxation time (Figure B ).

B. Experiment 2: Characteristic Time Scales

We are often interested to know the time in which collisions can produce large alteration in the original veloc-
ity distribution; for example how rapidly an initial anisotropic distribution function relaxes to a Maxwellian
because of collisions. The time required for the whole process to take place is known as "relaxation time"
and it is clearly a not defined one®” One way to obtain estimations of such parameter is to consider the
scattering of one particle and try to get information about the time scaling of a distribution of particles with
the same initial velocity conditions. This classical method known as test-particle approach was developed
by Chandrasekhar® and Spitzer,*® and a variation can be found, for instance, in Montgomery & Tidman.™
One relaxation time investigated by the test-particle method is the so-called slowing down time. This time
scale gives rate at which collisions decrease the mean velocity of the test particles. These particles are initially
"injected" into the plasma as a monochromatic "beam" which has only a constant ¢, velocity component
and are "traced" up to the time where they are stopped. Note that it can be shown™ that the slowing down
time is only related to the friction force coefficients of the FP equation. Another relaxation time of interest in
the test-particle approach is the so-called deflection time, which may be considered as the typical time scale
for an initially anisotropic distribution becomes isotropic® Per construction this time scale is associated
with the transverse velocity components of the test particles which are zero initially and is a measure of
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gradual deflection of the test particles by 90 degrees caused by the cumulative effects of collisions. Simple
considerations reveal that the rate of increase of the transversal velocities is only due to the diffusion term
of the FP equation.™ For the parameters used below one obtains for the slowing down and deflection time
the values 74, = 62.25 and 74, ~ 130.3, respectively.

In the context of the present paper we intend to study the self-consistent dynamical evolution of the velocity
distribution, where both friction force and diffusion are similarly important. Clearly, to switch off one of the
dynamical aspects seems to be idle but would contradict our self-consistent approach. In order to filter out
characteristic times required by a whatever distribution function to reach an equilibrium state because of
collisions we propose the following proceeding. The particles in the numerical experiments are subdivided
in two groups: The first one consists of the background (abbreviated by BG) particles (constant number
Npg = 3-10°) which are Maxwellian distributed (that is Gaussian distributed in each velocity component;
pupc = 0., 0%, = 1.) initially, and the second group is the beam particles (labelled as b). In all numerical
experiments discussed below, the latter group represent an ideal monochromatic beam that hits initially the

background particles with velocity only in the z-direction (69 (t=0) = 5). To get an intuition of the

complex non-linear dynamics resulting from the self-consistent computations, we will compare the simula-
tions with a reference experiment, where the Maxwellian distributed BG-particles are not affected by the
beam particles. In this sense the distribution function changes only because of the beam particles, which are
advanced according to (@), where the non-linear velocity-dependent friction force and diffusion coefficients
are obtained exactly by the background characteristics. In fact, this experiment can be considered as an
interface between the pure test-particle approach, where the coefficients are held constant for all the particles
all the time, and a real simulation. Also in the style of the test-particle approach, we use the mean value

——8—— PR=1/10
—e—— PR =1/50
NSC

25

3
v
0 50 100 150
Time Time
Figure 5. Velocity mean value of the beam particles Figure 6. Temporal evolution of the transversal vari-
< cgb) (t) > as a function of time for the self-consistent ance ‘75 (t). Full line: reference simulation; line with
simulations with particle ratios pr=1/50 (line with filled circles: pr=1/50 and line with open squares:

filled circles) and pr=1/10 (line with open squares) pr=1/10 experiment.
and the non self-consistent reference experiment (full
line).

< ¢, > and the "transversal" variance 05 of the beam particles as measurable quantities which are recorded
as function of time and seen in Figures B and Bl as full lines. Moreover, in these Figures the results of two
self-consistent simulations (3 - 10® cycles with At = 5-1072) are depicted, where the beam to background
particle ratios (pr) are fixed to pr=1/50 (lines with filled circles) and pr=1/10 (lines with open squares).
We remark that in both self-consistent simulations the global velocity distribution functions established by
the beam and background particles are highly non-Maxwellian up to ¢ <~ 35. In the following we mainly
restrict the discussion to the reference experiment and the self-consistent pr= 1/50 simulation.
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In order to get better insight of relaxation dynamics we introduce also the beam particle averaged z-
component of the friction force

1 X
(F(0) = 5 ZFz(a,t) (13)

and the "velocity-normalized" yy-component of the diffusion tensor given by

Ny —
Doy 1 Do (3, )
220) = 3 T (14)
<|51 N 2 a0
where N, is the number of beam particles. Note, that these quantities can be related with the time derivative

of the mean value < ¢, > and the variance o, respectively. The temporal evolution of the friction (F.(t))

and diffusion <@(t)> coefficients obtained from the reference (full line) and the pr= 1/50 (line with filled

le]
circles) simulation are depicted in Figure [ and B By fitting these and the previous curves we tried to

extract the time constants 7 that characterize the phenomenon and summarized them in the Tables 1 till

4. At first sight we recognize that mean values as well the variances of the three experiments show

< e (t) > /50 rref < F.(t) > 7}17/50 T;ef

t € [0, 15] slow scale slow scale t €10, ~ 25] transient -
dynamics dynamics dynamics

t € [15, 30] fast scale fast scale t € [0, ~ 40] - transient
dynamics dynamics dynamics

t € [28, 50] ~ 12 - t € [28, 70] ~ 12 -

t € [30, 90 - ~ 16 t € [40, 80] - ~ 16

Table 1. Time constants 7. for < c, > Table 2. Time constants 7 for < F, >

1/50 e 1/50 e
o (1) ! ol (P2(0) ryf !
t € [0, 20] steep rise up to | — t € [0, ~ 25] transient -
the max dynamics
t € [0, 30] - steep rise up to t € [0, 40] - transient
the max dynamics
t €[22, 40] ~ 58 - t €[22, 80] ~ 10 -
t € [35, 70] - ~ 58 te 40,1200 | - ~ 19

Table 3. Time constants 7, for 05 ()

Table 4. Time constants 7p for <D‘CZ‘2 (t)>

approximately the same basic features which appear to be a hint that the underlying relaxation dynamics
is essentially similar. However, the relaxation dynamics of the self-consistent experiments are much faster
than the reference simulation. This observation seemed to be a direct consequence of the non-Maxwellian
global velocity distribution. Note, that the "heating" of the beam particles — which may be considered
as a measure of the rapidly increasing asymmetry of the beam particles distribution function (not shown
here) — is less pronounced in the self-consistent experiments which seemed to be a consequence of the non-
Maxwellian global velocity distribution. The "decay" of these maxima seen in Figure B can be associated
with further characteristic time scales. It is not surprising that the time constants for the mean value and
the variance in perpendicular direction are different. Actually, from the study of the Ornstein-Uhlenbeck
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process — the simplest linear diffusion process — it is known that the time constant for the variance is larger
than the one for the first moment.® Furthermore, we observe that the global velocity distribution of the self-
consistent pr= 1/50 simulation is now close to the background Maxwellian of the reference experiment for
times ¢t >~ 35. Consequently, it seems to be possible that the (fast) initial non-Maxwellian driven relaxation
dynamics turn into the Maxwellian dominated equilibrium dynamics. It is obvious from Figure [ that the

—e— (D,/0)"

s D),/

50 100 150
Time
Figure 7. Temporal evolution of the z-component of Figure 8. The normalized averaged diffusion coeffi-
the averaged frinction force obtained from the refer- cient as a function of time computed with the refer-
ence (full line) and pr=1/50 (line with filled circles) ence (full line) and the self-consistent pr=1/50 (line
experiment. with filled circles) simulation.

non-Maxwellian global velocity distribution leave its mark especially during the first ~ 30 time units. We
recognize there that the shape of the friction coefficient of the pr= 1/50 experiment is different from that
one of the refrence simulation and, furthermore, that the self-consistent relaxation dynamics is much faster
than in the non self-consistent case. It is interesting that these characteristic initial scales are not seen in
the temporal evolution of the diffusion coefficients plotted in Figure B On closer inspection of the curves
plotted in Figures M and B we recognize points of inflection located roughly in the intervals ~ 20 < ¢ <~ 30
and ~ 30 <t <~ 40 for the pr= 1/50 and non self-consistent simulation, respectively. On the contrary we
have found a very good agreement between friction and mean value time constants. At first, it is astonishing
that the friction time constant of the self-consistent experiment is also visible in the transversal diffusion
coefficient. Under the working hypothesis that the relaxation dynamics turns into a Maxwellian dynamics
for t >~ 35, we expect a behavior similar to the reference experiment: The onset of the friction and diffusion
should start approximately at the same time and the rise of these coefficients should occur at the same

characteristic time constant for the pr= 1/50 simulation, that is 7-}1/ M 7-117/ o0,

IV. Conclusion and Future Works

In the present paper we have shown that a 3D self-consistent intra-species collisonal relaxation can be
effective modeled using the equivalence between the FP equation and a Langevin-type SDE. Friction force
and diffusion tensor are evaluated at each time step via 3D Fast Fourier Transform assuring fully self-
consistency. A renormalization technique has been adapted for the FP solver in order to drastically reduce
the error intrinsically generated by the assignment and interpolation procedure. The presented results of
numerical experiments reveal the high quality and reliability of the approximation methods used in the FP
solver. Moreover, the dimensionless character of the previous analysis guarantees that it fits perfectly to
the study of any kind of charged particles collisions. Inspired by the classical test-particle approach, we
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presented a first study of characteristic time constants in self-consistent collisional relaxation. In essence, we
identify a fast initially non-Maxwellian driven dynamics which accelerate the relaxation process and seemed
to be responsible for short characteristic time constants.

A near future goal concerns the self-consistent simulation of inter-species collisional relaxation. Several
powerful approximations are possible which enormously reduce computational costs.

Furthermore, some methodical improvements of the FP solver are desireable. First, we want to explore the
various possibilities of reducing the so-called statistical noise, one of the major problems related to particles
simulation especially in scarsely populated regions of the velocity space. Remedies in this context are the
velocity distribution function averaging over several spatial grid cells or the particle creation and destruction
technique. Another cure for noise reduction may be obtained by the fact that the short-time behavior of
the distribution function is characterized by a diffusion process. This means, the mean value and variance
have to be computed in an appropriate manner to estimate the local velocity distribution function of the
particles.

Secondly, a further scientific future goal is the construction of an efficient high order approximation of the
multi-dimensional Langevin-type SDE in order to obtain consistent overall accuracy of the FP solver. The
starting point to construct high order schemes for SDEs is the stochastic Taylor expansion, which is based on
the repeated application of the It6 formula. Such an Ito-Taylor expansion together with the corresponding
hierarchical set enables us to retain the correct number of expansion terms for a desired order of the scheme.
A certain disadvantage of It6-Taylor approximations is that the derivatives of various orders of the drift and
diffusion coefficients must be determined at each step. To avoid the use of derivatives so-called explicit weak
schemes have to be applied.

A main topic in future will be the coupling of the FP solver with fully electromagnetic PIC codes or/and
Monte Carlo modules. As mentioned above, an appropriate PIC code for coupling test purposes is already
available at IHM. Moreover, a simplified Monte Carlo model based on the P, ,;; technique has been already
developed and tested at Research Center Karlsruhe. This is thought to be the appropriate basis for the very
first coupling tests before the FP module run in parallel with the LasVegas and high order PIC modules
coupled together in the PicLas solver to simulate the behavior of the Pulsed Plasma Thruster.
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