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Abstract: Laser absorption spectroscopy was applied to a magnetic layer type hall 
thruster plume in the different ambient pressure to evaluate the influence of the ambient 
pressure on the number density measurement. As a result, up to 76 % of the measured meta-
stable number density by an 823.16 nm line was found the background xenon at the 
acceleration channel exit. Then, the total number density distribution of the propellant 
xenon was estimated and compared with PIC result. 

Nomenclature 
A = Einstein coefficient, s-1

g = statistical weight 
h = Planck’s constant, J.s 
I = probe laser intensity, mW/mm2

I0 = incident laser intensity, mW/mm2

k = absorption coefficient, m-1

kB = Boltzmann constant, J/K B

                                                          

K = integrated absorption coefficient, GHz m-1

n = number density, m-3

p = pressure, Pa 
r = radial coordinate, mm 
R = plume radius, mm 
T = translational temperature, K 
Te = electron temperature, eV 
x = coordinate in the laser pass direction, mm 
y = probe beam position, mm 
z = axial coordinate, mm 
ΔE = energy gap, eV 
λ = wavelength, nm 
ν = laser frequency, Hz 
ν0 = center absorption frequency, Hz 
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i = absorption state 
j = excited state 
high = high ambient pressure condition 
m = meta-stable state 
prop = propellant 
STD = standard condition 
tot = total states 

I. Introduction 
all thrusters are one of the promising thrusters of satellites for orbit transfer or North/South station keeping 
missions because it produces high thrust efficiency, exceeding 50%, with a specific impulse range of 1000-

3000 s and a higher ion beam density than ion thrusters because of the existence of electrons in the ion acceleration 
zone. This is because a moderate magnetic field is applied in the acceleration zone, causing the magnetization of the 
electrons and not the ions.1-3 Hence, several types of Hall thrusters are actively developed in Russia, USA, EU and 
Japan4-10. 

 Ｈ

In their practical use in a spacecraft, the interactions between the plume of the thruster and the host spacecraft 
cause serious problems11-13. High-energy main beam ions generated and accelerated in the acceleration channel 
collide with unionized propellant atoms in the plume, resulting in the production of low-energy ions and high-energy 
atoms by charge exchange reaction (CEX). These CEX ions propagate in the radial and upstream directions because 
of the potential distribution near the spacecraft. The backflow of CEX ions becomes a contamination source causing 
erosion, sputtering, degradation, increment of temperature and potential change of solar arrays or spacecraft surfaces.    

Recently, a plume shield has been developed to protect the spacecraft from CEX ions. The plume shield 
developed by Mitsubishi Electric Corporation intercepts ions with higher angle beyond 45 degree14. Then, it is 
important to clarify a production mechanism of CEX reactions to evaluate the shields performances and 
optimization. Plume characteristics have been a hot subject and investigated experimentally in ground-based 
facilities15-20 and even in an actual flight test21 as well as numerical calculations22-25. Because most of 
measurements, however, are conducted by intrusive probe methods such as electrostatic probes, energy analyzers 
and mass spectrometers, measurements near the thruster exit are difficult for their disturbances, where CEX 
reactions would most frequently take place14-20. The plume properties near the thruster exit are also useful for initial 
conditions of numerical calculations.  

In our previous research, laser absorption spectroscopy (LAS) and single probe measurements were applied to a 
magnetic-layer-type hall thruster plume developed at the University of Tokyo9, 26. However, measured number 
density of xenon might be overestimated due to an influence of background xenon. In this study, number density 
distributions of xenon atom were measured in two different ambient pressure conditions to evaluate the influence of 
the background xenon on the measurement. Then, the number density distribution of the propellant xenon atom was 
estimated separately from the background one. 

 
 

II. Theory of Laser Absorption Spectroscopy 
Laser absorption spectroscopy has some superiority to other non-intrusive spectroscopes such as emission and 

LIF: 1) it is applicable to optically thick plasma, and 2) absolute calibration using a standard light source or a density 
reference cell is not necessary. Moreover, 3) the measurement system is portable when a diode laser is used27.  

The relationship between the laser intensity and the absorption coefficient is expressed by as28, 

 Iyxk
x
I ),,(

d
d ν−= . (1) 

Since xenon atom has a hyperfine structure due to isotope shifts and nuclear spin splitting, an absorption profile 
is generally very complex.29-32 In this study, an absorption line from the meta-stable xenon atom at 823.16nm 
(6s[3/2]0

2→6p[3/2] 2) is targeted. Considering the Doppler dominant broadening and the hyperfine structure, the 
absorption profile of this line is a superposition of twenty-one Gaussian functions whose relative square are 
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determined by natural abundance and relative intensity of the hyperfine structure. However, it is not necessary to 
take care of the hyperfine structure because only the integrated absorption coefficient gives the number density.  

The number density of absorbers is related to the integrated absorption coefficient as, 
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In the measurement, the pass integrated absorption coefficient K(y) is obtained by, 
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Since distributions of absorption properties in plumes would be axisymmetric, local integrated absorption 
coefficient K(r) with the radial coordinate r is obtained by the Abel inversion expressed as33, 
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In this study, the numerical Abel inversion was applied after sixth order polynomial fit to the measured pass 
integrated absorption coefficient. 

III. Experimental Setup 

A.  Magnetic-layer-type Hall thruster 
Figures 1 and 2 show a cross section of a magnetic-layer-type Hall 

thruster and its photo in operation. The inner and outer diameters of the 
acceleration channel are 48 and 62 mm, respectively. An acceleration 
channel wall was made of BN. The anode is located at 21 mm, upstream 
end of the acceleration channel. A solenoid coil is set at the center of the 
thruster to apply a radial magnetic field in the acceleration channel. The 
magnetic flux density is varied by changing the coil current. There is no 
outer coil because a uniform magnetic field distribution is maintained 
along the azimuthal direction. A hollow cathode (7HCN-001-001; Veeco-
Ion Tech Inc.) was used as an electron source and a neutralizer. A vacuum 
chamber of 2 m diameter by 3 m length was used in the experiments. The 
pumping system comprised a diffusion pump (37000 l/s), a mechanical 
booster pump (2800 l /s), and two rotary pumps (250 l /s). Two operation 
conditions are tabulated in Table 1. The ambient pressure was changed by 
supplying the xenon gas in the chamber.  

Fig. 1 Cross section of a magnetic 
layer type Hall thruster. 

 
 Table 1 Operation conditions.  
 Parameter Normal pamb High pamb 

Propellant gas Xe: 1.0 Aeq Xe: 1.0 Aeq 
Ambient gas - Xe: 0.4 Aeq 

Discharge voltage 260 V 260 V 
Discharge current 1.2 A 1.2 A 

Applied magnetic field 11.2 mT 11.2 mT 
Ambient pressure 2.77 x10-3 Pa 4.37x10-3 Pa 

 

 
 
 
 
 
 
 
 
 Fig. 2 A photo of a Hall thruster plume. 
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B. Measurement System 
Figure 3 shows a schematic of the measurement system. A single longitudinal mode diode-laser (HL8325G; 

HITACHI Ltd., LDC205; Thorlabs Inc.) was used as the laser oscillator. The laser frequency monitored by a 
spectrometer (PMA50; Hamamatsu Photonics K.K.) was roughly matched to the absorption one by temperature 
control (TED200; Thorlabs Inc.). Then, it was scanned over the absorption line shape by current modulation with a 
function generator. The modulation frequency and width were 1 Hz and 30 GHz, respectively. An etalon was used 
as a fine wave-meter. Its free spectral range was 1 GHz. 

The probe beam was guided into the vacuum chamber 
through a multimode optical fiber. The fiber output was 
mounted on a two-dimensional traverse stage to scan the 
plume in the radial and axial direction. The spatial resolution 
determined by the photo detector area was 1 mm. To reduce 
plasma emission, a band pass filter, whose FWHM was 10 
nm, was used. As a reference, absorption signal in glow 
discharge plasma was also monitored. Its input power, 
discharge voltage and ambient pressure were 1.5 mW, 500 V, 
and xenon 79 Pa, respectively. All signals were recorded 
using a digital oscilloscope (DL708; Yokogawa Co.) with 
10-bit resolution Measurement range is r<120 mm and 
z<200 mm as shown in Fig.3. Here, r and z are the radial and 
axial coordinates.  
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Fig. 3 Measurement system. 
 

IV. Results and Discussion 

A. Data Processing 
Figure 4 shows transmitted laser intensity signals of the plume and glow plasma and an etalon signal. At each 

measurement point, eight profiles were recorded. Absorbance was obtained from normalization of the frequency and 
the transmitted laser intensity by the etalon signal and the laser intensity without absorption. Then pass-integrated 
absorption coefficients were obtained by numerical integral of the absorbance. Figure 5 shows the distributions of 
the pass-integrated absorption coefficients in two pressure conditions at z=20mm. As seen in this figure, the 
coefficients in the high pressure are larger than those in normal one. Then, the number density distributions were 
deduced by the Abel inversion. 
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Fig. 4 Transmitted laser intensity signals 
of Hall plume and glow plasma and etalon 
signal. 

Fig. 5 Distributions of pass-integrated 
absorption coefficients at different 
ambient pressure, z=20mm. 
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B. Influence of Ambient Pressure on LAS Measurement 
Figure 6 shows measured number density distributions of meta-stable xenon in the normal pressure condition. 

The distribution has annular peak at the acceleration channel exit and then the peak moves on the axis in the 
downstream. The number density decreases by 1/e at 130 mm from the exit. Similar distribution was obtained in the 
high pressure condition.  

Figure 7 shows the distribution of background meta-
stable xenon in the normal condition. Here, it is assumed that 
the excitation ratio to the meta-stable was independent of the 
ambient pressure. The distribution has a peak at outer part of 
the acceleration channel exit, where the number density of 
meta-stable xenon from the background was found to 
account for 76% of total one. This shift of the peak to 
outward might be caused by the error in the Abel inversion. 
The number density also decreases by 1/e at 140 mm from 
the channel exit. 

Then, the distribution of the propellant meta-stable xenon 
in the normal pressure condition was deduced from the 
difference between Fig.6 and Fig.7. Figure 8 shows the 
deduced number density distribution of propellant meta-
stable xenon. The distribution also has a peak at the channel 
exit and shows more directional on the axis than that in Fig.6. 
The number density rapidly decreases by 1/e at 50 mm from 
the channle exit. 
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Fig. 6 Measured number density distribution 
of meta-stable xenon in the normal condition. 
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C. Total Number Density Distribution of Propellant Xenon 

Fig. 7 Number density distribution of meta-stable 
background xenon in the normal condition. 

Fig. 8 Number density distribution of meta-
stable propellant xenon in the normal condition. 

The total number density distribution of propellant xenon was estimated using a relationship as, 

 
( )

std m,high m,

Bstdhigh
prop m,prop tot,

/
nn
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nn

−
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Here, the number density of the flowed xenon separately from propellant is deduced from the ideal equation of state 
and the uniform temperature distribution of 430 K measured in our previous study was used. Figure 9 shows the 
deduced total number density. The maximum number density is 9.7×1020 m-3,which is two orders of magnitude 
higher than that estimated from the operation conditions. This might be partly because the peak difference between 



Figs 7 and 8 due to the Abel inversion error. Another reason might be the difference of the excitation process. The 
meta-stable of the background xenon is mainly produced by electron-impact collisions in the plume. On the other 
hand, in addition to the electron-impact excitation, that of the propellant might be produced by spontaneous 
emission from the higher excited xenon in the anode, which implies that Eq. (5) would give an above overestimation.  

Therefore, assuming Boltzmann relations among all excited states, total number density is deduced from 
measured number density as, 

 ⎟⎟
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Here summation l is taken for all states34. Figure 10 shows the deduced number density using the electron 
temperature distribution measured by the previous single probe measurement. The maximum density is 1.48×
1019m-3 at the channel exit. This value is very reasonable because the number density estimated from the mass flow 
rate, the thermal velocity and the propellant utilization efficiency of 0.8 and channel exit area of 12.1 cm2 is 1.2×
1019 m-3 at the channel exit. The result shows the similar distribution with meta-stable one. The number density 
rapidly decreases by 1/e at 50 mm from the channle exit. 
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D. Comparison with PIC result 
The measured result was compared with numerical 

calculation using Particle-in-cell (PIC) Method. For 
simplicity, only neutral particles and ions are considered, 
while electron was not calculated. One macro-particle 
contains 109 real particles in this code. The details of this 
code are described in Refs. 35.  

The result also shows the directional distribution on 
the axis as seen in the measured one. The distance whose 
number density was 1/e of the maximum was 20mm, 
which is the medium between Figs. 9 and 10. One reason 
of this discrepancy might be complex internal excitation 
processes. Then, a detail collisional-radiative model might 
be necessary to estimate the total xenon density from the 
meta-stable one. 

Fig. 9 Number density distribution of total 
propellant xenon in the normal condition by 
relations between additional ambient gas and its 
meta-stable number density. 

Fig. 10 Number density distribution of total 
propellant xenon in the normal condition assuming 
Boltzmann relations in all states. 

Hall thrusterHall thrusterHall thruster

 Fig. 11 Calculated xenon number density by PIC.
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V. Conclusion 
Laser absorption spectroscopy was applied to a magnetic layer type hall thruster plume using an absorption 

profile of XeI 823.16 nm. The influence of the background xenon on the measurement of the propellant one was 
evaluated by comparing two different ambient pressure conditions. Then, the total number density of the propellant 
xenon was deduced from the measured meta-stable number density by two methods. One is the relation between 
measured background meta-stable xenon and the total background xenon. The other is the Boltzmann relation in all 
states. Both methods contradict with the PIC result. Then, a detail collisional-radiative model might be necessary to 
estimate the total xenon density from the meta-stable one. 
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