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Abstract: The Plume divergence in the Hall thruster due to the plasma pressure is
analyzed by deriving and solving envelope equations. The evolution of the electron tem-
perature and the radial expansion of the plasma beam are calculated self-consistently. The
rate of decrease of the electron temperature due to the plasma radial expansion is a¤ected
by heat conduction along the plasma propagation. For the annular plasma jet exiting the
Hall thruster, approximated as a slab, it is found that if the coe¢ cient of the heat con-
ductivity is large the cooling of the electrons of the expanding plasma beam is small and
consequently the plume divergence is larger. For the plasma beam approximated as cylin-
drical beyond the point at which it crosses the thruster axis, we show that a large heat
conduction does not slow the electron cooling. The plume divergence due to the plasma
pressure is therefore smaller. The electron temperature is also a¤ected by the intensity
of the magnetic �eld beyond the cathode. A radial magnetic �eld at the thruster exhaust
inhibits a large cross-�eld heat �ux. On one hand, the smaller heat conductivity of the
magnetized plasma results in a cooling of the electrons as they cross the magnetic �eld.
On the other hand however, the reduced mobility of the magnetized electrons results in an
ambipolar electric �eld that tends to heat the electrons. We show that there is an optimal
intensity of the magnetic �eld, at which the temperature of the electrons that cross the
magnetic �eld is minimal and at which, therefore, the plume divergence is minimal.
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Nomenclature

a = plume width
B = magnetic �eld intensity
c = plasma sonic velocity
d = geometry exponent
k = reciprocal of a
mi , me = ion, electron mass
n = quasineutral plasma density
q = conducted heat
r = radial coordinate in cylindrical geometry
S = cross section area of the beam
s = entropy
Te = electron temperature
u = dimensionless radial velocity in the envelope formalism
v = dimensionless axial velocity in the envelope formalism
vr , vz = radial, axial velocity component
z = axial coordinate
� , �1 , �2 = averaging parameters in the envelope equations
�B = Bohm di¤usion coe¢ cient
� = dimensionless conducted heat
�0 = particle �ux
�" = energy �ux
� = coe¢ cient of heat conductivity
� = collision frequency
� = dimensionless axial coordinate
!c = electron cyclotron frequency
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I. Introduction

Acrucial issue in the Hall thruster performance is achieving a better plume collimation. Decreasing the
plume divergence should reduce the erosion of surfaces, especially the solar panels, by impacting ions.

Also, a less divergent plume should result in a smaller interference with the RF transmission that is used
for communication. Two major sources for the plume divergence are the curvature of the magnetic �eld
lines and the radial force exerted on the plasma by the electron pressure. A considerable theoretical and
experimental e¤ort has been made over the past few years in order to understand the evolution of the
plume.1�22 Encouraging indications for a reduction of plume divergence have been found when the magnetic
�eld con�guration 21 or the electrodes 11 were manipulated. We have recently analyzed the role of the
magnetic �eld curvature in increasing the plume divergence and made suggestions as to what magnetic �eld
pro�le can minimize that divergence.20 In the present paper we analyze the e¤ect of the plasma (electron)
pressure on the plume divergence, which, outside the acceleration region, seems to be the main reason for
the plume divergence.
The Plume divergence in the Hall thruster due to the plasma pressure is analyzed by deriving and solving

a set of envelope equations. The evolution of the electron temperature and the radial expansion of the plasma
beam are calculated self-consistently. Although our envelope equations cannot provide as detailed a picture
of the plume as some of the numerical simulations do, they have the advantage, due to their simplicity, of
allowing a calculation of the plasma �ow up to a large distance. This is done by requiring the plasma �ow
to satisfy appropriate boundary conditions at in�nity. In addition, we derive analytical expressions for the
�ow at asymptotic limits that provide us with a useful insight into the physical processes that govern the
plume divergence.
Since the source of the plume divergence is the plasma pressure the extent of the divergence depends on

the evolution of the electron temperature. If both magnetic �eld and heat conductivity are zero the electron
temperature decreases adiabatically to zero as the plasma expands and the asymptotic value of the plasma
perpendicular velocity can be determined analytically. The rate of decrease of the electron temperature due
to the plasma radial expansion is a¤ected by heat conduction along the plasma propagation. For the annular
plasma jet exiting the Hall thruster, approximated as a slab, it is found that if the coe¢ cient of the heat
conductivity is large the cooling of the electrons of the expanding plasma beam is small and consequently
the plume divergence is larger. For the plasma beam, approximated as cylindrical beyond the point at which
it crosses the thruster axis, we show that a large heat conduction does not slow the electron cooling. The
plume divergence due to the plasma pressure is therefore smaller.
The electron temperature is also a¤ected by the magnitude of the magnetic �eld beyond the cathode. A

radial magnetic �eld at the plasma exhaust inhibits a large cross-�eld heat �ux. On one hand, the smaller
heat conductivity of the magnetized plasma results in a cooling of the electrons as they cross the magnetic
�eld. On the other hand however, the reduced mobility of the magnetized electrons results in an ambipolar
electric �eld that tends to heat the electrons. We show that there is an optimal intensity of the magnetic �eld,
at which the temperature of the electrons that cross the magnetic �eld is minimal and at which, therefore,
the plume divergence is minimal.
In Section II we present the two-dimensional equations and in Section III we derive the envelope equations.

These equations allow us to address the inherently two-dimensional problem by simply solving a set of
ordinary di¤erential equations. In Section IV we reanalyze the isothermal case 16;17 that provides us with an
upper bound on the plume divergence for a given initial electron temperature. In Section V we numerically
solve the evolution of a slab plasma beam with a �nite heat conductivity. The above-mentioned two opposite
e¤ects of the magnetic �eld are shown and discussed, following an earlier version of this analysis.18

In Sections VI and VII the very di¤erent e¤ects of heat conduction on the plume divergence for the two
geometries are described. In Section VI the e¤ect of the heat conductivity on the divergence of a slab beam is
analyzed. We present in more detail a previous analysis 19 that includes analytical expressions for the plume
divergence for an asymptotically large coe¢ cient of the heat conductivity. It is shown that the large amount
of conducted heat by a slab beam is converted downstream into electron thermal energy and consequently
into a large radial velocity and a large divergence of the plasma beam.
Beyond the point at which it crosses the thruster axis we approximate the plasma beam as cylindrical.

We show in Section VII that the heat conducted by a cylindrical beam is decoupled from the electron thermal
energy convected by the plasma beam. The plume divergence in the cylindrical case is therefore smaller.
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II. The two-dimensional equations

We describe here a quasi-neutral azimuthally symmetric plasma beam propagating in the z direction
across a magnetic �eld. We approximate the magnetic �eld as having a r component only, perpendicular
to the direction of the beam, and neglect the axial, z component. The plasma current has an azimuthal
component only. We therefore model the plasma beam by writing �uid equations for the identical ion and
electron density n and radial and axial velocities, vr and vz. Since in the Hall thruster the ion temperature
is much smaller than the electron temperature Te, we take the ion temperature in the model as zero. We
also assume that the ions are unmagnetized. The plasma dynamics is therefore governed by the continuity
equation
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where mi and me are the ion and electron masses, � and !c = eB=me are the electron collision and cyclotron
frequencies, and qz;r is the heat �ux in the z; r direction. Also e and B are the elementary charge and the
intensity of the radial magnetic �eld. The second term on the right hand side (RHS) of the second of Eq.
(2) expresses the axial magnetic force due to the azimuthal electron current and the radial magnetic �eld.
For completion we also derive in a standard way the equation for the entropy. Employing Eqs. (1)-(3),

we write the heat balance equation for the electrons nTe
�!5 � �!v + �!5 � (3=2)nTe�!v +
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in which the last term on the RHS is the rate of heating. Using the identity
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This equation shows clearly that the entropy �ux is constant in the absence of heating and heat conduction.
In the next section we derive a set of envelope equations.

III. The envelope equations

We address two speci�c cases, both of interest to the Hall thruster. One case is of a thin annular beam
that is approximated as a planar slab in which r0 is the inner radius of the annulus. The second case is of a
solid cylindrical beam in which r0 = 0 denotes the axis of symmetry. We derive envelope equations that are
suitable for the two cases, either a thin annular beam18 or a solid cylindrical beam. We integrate the above
equations multiplied by 2�r with respect to r between r = r0 and r = r1, where r1 denotes the outer edge of
the beam. The plasma beam as it exits the thruster channel can be approximated by the slab beam of the
�rst case, while after it expands radially and crosses the thruster cylindrical axis, it can be described by the
cylindrical beam of the second case. In both cases, as a result of the radial integration over the entire plume
we obtain quasi one-dimensional equations for the radially-average plasma variables at each axial location.
Since there is no net radial �ux, all �rst terms on the left hand side (LHS) of Eqs. (1)-(3) vanish upon

the radial integration. So does the �rst term on the RHS of Eq. (3). The integrated equations are the
continuity equation

� (z) �
Z r1

r0

2�rnvzdr = �0 = const. ; (5)
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the r component of the momentum equation
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the z component of the momentum equation
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Here rs = (r0 + r1)=2 for the slab and rs = r0 for the solid cylinder. The assumption of a radial magnetic
�eld only holds for the thin annular beam. The cylindrical beam will be assumed unmagnetized.
We now transform the equations for �uid variables that depend on z and r to equations for the radially

averaged quantities that depend on z only, where the averaged quantity hfi (z) is de�ned as

hfi (z) �
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: (11)

The temperature Te is approximated as constant across the plume Te (z; r) �= Te (z) due to the plasma high
heat conductivity along magnetic �eld lines. So are !c (z; r) �= !c (z) and � (z; r) �= � (z) . Moreover, we also
approximate the axial velocity vz as constant across the plume vz (z; r) �= vz (z) since vz is approximately
constant at the thruster exit plane. We therefore write

�0 � vz (z)
Z r1
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For completeness we also present the quasi one-dimensional equation for the entropy
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We now use an explicit expression for qz

qz = ��
dTe
dz
; (17)

in which the coe¢ cient for heat conductivity is � and approximate h1=ni = 1=n where n = n (z) is the
radially averaged plasma density at z. The governing equations for hvri, vz, and Te become
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Again, we express the averaged quantity as 

v2r
�
= �2hvri2: (21)

We need an additional equation for the the beam thickness a, the �averaged streamline� equation, of the
form

da

dz
= �1

hvri
vz

; (22)

where �1 is the assumed constant ratio between the transverse velocity at the plume boundary and the
average transverse velocity.
To proceed we write an explicit expression for �

� = 3:16
nTe
me�

�
1
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2 + 1

�
: (23)

From the last equation it follows that in the region of �nite magnetic �eld in which !c >> � the resulting
heat coe¢ cient is very small. As the magnetic �eld vanishes � becomes larger.
We now write the equations (22), (18), (19), and (20) in a dimensionless form:
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for the dimensionless unknowns u, v, and c2 with the dimensionless independent variable �:
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In these equations fB is the normalized magnetic force, �n the normalized heat conductivity, and �"n the
ratio of the total energy �ux to the directed kinetic ion �ux,

fB =
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Here � and !c are the electron collision and cyclotron frequencies and _m � mi�0 is the mass �ow rate,
v0 =

p
2e�A=mi, with �A, the applied voltage, and a0 = a (0). Although there is no self similar solution for

6
The 30th International Electric Propulsion Conference, Florence, Italy

September 17-20, 2007



the two-dimensional equations, we assume here that the averaging parameters �, �1, and �2 remain constant
along the plume axis. Also S = S (z) is the e¤ective cross section of the beam,

S = � (4rs)
2�d

ad; (30)

and d = 1 for a slab geometry, d = 2 for a cylindrical geometry. We note that if � is proportional to n the
dimensionless �n varies with the beam cross section and with the temperature. We also de�ne the normalized
conducted heat

� � 2�

miv20nvz

dTe
dz

= �"n �
�
�2u

2 + v2 + 5c2
�
:

The electron collision frequency is the sum of electron-ion collision frequency �e�i and of additional
�anomalous�collisions frequency �ano. We assume that the plasma is nearly fully ionized so that electron-
neutral collisions are negligible. We therefore write

� = �e�i

�
1 +

�ano
�e�i

�
; �e�i = 2:91� 10�6 ln� nT�3=2e ; (31)

where ln� is the Coulomb logarithm, n is in cm�3 and Te in eV. The anomalous collision frequency was taken
as Bohm di¤usion �ano = �B!c with a somewhat smaller than the classical value of the Bohm coe¢ cient,
�B = 1=80 (as in Refs. [23, 24]). With this expression we write the normalized heat conductivity in the
form

�n = �nac
c2pad

(!2c=�
2 + 1) (1 + �ano=�e�i)

(32)

Usually we take
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We solve the equations by specifying boundary conditions upstream

v (0) = 1 a (0) = 1 u (0) = u0 c2 (0) = c20 (34)

and we require that
c2 (1) = 0; (35)

which determines the value of �"n and the amount of heat conducted �.
In the next section we present a brief analysis of the isothermal case using our set of equations. The

results of that analysis are similar to previous analyses of the isothermal case that provided self-similar
solutions of the �ow.16;17

IV. The isothermal case

In the isothermal case c2 (z) = c20 being constant. We also assume that the magnetic �eld is zero so that
the axial velocity is constant as well, v (z) = 1. We combine Eqs. (24) and (25). The resulting equation

d2a

d�2
=
�2

2a
; �2 � 2��1c20; (36)

is integrated to
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Figure 1. Characteristic slab plume pro�les for the parameters mentioned in the text: (a) Te which increases
in the magnetized region, (b) the radial and axial velocities, denoted is the asymptotic radial velocity, (c) the
width of the beam, and (d) the heat conductivity, much smaller in the magnetized region.

The two last relations are combined for the following relation between a0 and �:
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�
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�
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i�p
�
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2
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#
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This last relation provides us with the value of � for which a0 becomes of order unity. Since � is usually
much smaller than unity, for a0=� � 1 we approximate erf(ia0=�) � i�= (a0

p
�) exp(a02=�2) so that:

� �=
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The �rst term on the RHS shows a strong dependence on the electron temperature. If the temperature is
higher by a factor of 2 the location where the plume reaches a certain value of a0 is shortened by a factor
exp

�
a02=�2

�
.

Since the plume expansion is so sensitive to the value of the electron temperature, it is important to
examine the case that the temperature may vary. The processes that a¤ect the temperature evolution
are transfer of energy between convected thermal energy and directed energy, heat conduction and plasma
heating by the electric �eld. In the next section we present a numerical solution without the assumption of
an iothermal electrons.

V. Numerical solution of the equations in a slab geometry

Equations (24), (25), (26), and (27) were solved for various values of the input parameters, using the
method described in the Appendix. Note that while in the isothermal case the structure of the equations
is the same for both geometries, when heat conductivity is taken into account, the solution depends on the
geometry. We start with the slab geometry which is a good approximation as long as a � r0 for the thin
annular plasma beam exiting the thruster. Equation (33) holds with d = 1.
The cathode is located at z = 0 and the plume propagates in the region z > 0. The pro�le of the magnetic

�eld intensity was taken as

B = Bpeak exp

"
� (z � zm)

2

L2m

#
; (41)
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Figure 2. The temperature pro�le for di¤erent values of zm in Eq. (1), denoted is the value of B0=Bpeak . the
parameters, except for zm are as in Fig. 1. The curve for which B0=Bpeak = 0:21 is as in Fig. 1.

with zm < 0 a location inside the thruster channel and Lm being the characteristic width. Figure 1 presents
the results of the calculation for a typical case Bpeak = 200 G, zm = �30 mm and Lm = 20 mm. The
thruster dimensions are channel half width a0 = 7:5 mm and a median radius of rs = 42:5 mm. The
propellant is assumed to be Xenon. At the cathode the temperature is taken as Te = 3 eV, the transverse
velocity as u0 = 0, and �A = 300 V. The particle �ux �0 was calculated for _m = 4:76 mg= s. The values of
the three averaging parameters �, �1, and �2 were taken as 3=2, 4, and 16=5 respectively.
The axial pro�les are presented in the near �eld only even though the calculation domain spans tem-

peratures approaching zero. The solid and dashed lines show the results as found by the two di¤erent
numerical schemes described in the Appendix. An important result is the temperature behavior within the
magnetic �eld region (Fig. 1(a)). The temperature increases sharply as the magnetically impeded electrons
are forced to cross the magnetic �eld at the same velocity as do the ions. The increase in temperature is
due to the work of the ambipolar electric �eld, hence, the ion kinetic energy (and velocity in the z direction)
decreases (Fig. 1 (b)). Curiously, until now there is only little experimental evidence for such a temperature
increase.1;15 As the magnetic �eld intensity drops, � is increased, allowing heat to �ow downstream (Fig. 1
(d)). The temperature gradient in that region is inversely proportional to the fast-varying coe¢ cient heat
conductivity as the total heat �ux varies slower (the total energy �ux is constant). At a certain plane along
the plume propagation the temperature gradient becomes smaller as some point along the plume the drop
in temperature levels to much smaller gradients, this is the result of conducting heat with a much higher
heat coe¢ cient value. As the magnetic �eld vanishes the values of the plasma parameters match the values
of the zero magnetic �eld calculations (dashed line). Since only the near �eld is presented (z=a0 � 15), the
asymptotic approach of Te to 0 and of u to u1 = u (z =1) is not apparent in Fig. 1. As is seen in Fig.
1(c) the magnetic �eld has two opposing e¤ects on the electron temperature and further on the plume diver-
gence. On one hand, the magnetic �eld inhibits heat �ux and therefore the temperature drop is enhanced in
magnetized region, resulting in a reduced plume divergence. On the other hand, the magnetic �eld induces
an ambipolar electric �eld that heats the electrons, resulting in an increased plume divergence. Due to the
competition between the two processes that govern the evolution of the temperature, the reduction of heat
conductivity and the introduction of the ambipolar electric �eld, the dependence of the plume divergence
on the magnetic �eld intensity turns out to be nonmonotonic. An optimal intensity of the magnetic �eld
exists, at which the electron temperature of the plume exiting the magnetized region is lowest and the �nal
plume divergence minimal. The dependencies of the electron temperature and the plume divergence on the
intensity of the magnetic �eld are exhibited in Figs. 2 and 3. Figure 2 shows the pro�les of the electron
temperature for various di¤erent values of zm, re�ecting how deep into the magnetic �eld is the cathode
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Figure 3. The asymptotic radial velocity as a function of the location of the cathode with respect to the
magnetic �eld.

located. For the assumed identical Bpeak , Lm and Te (0) there is an optimal value of zm, or, equivalently,
magnetic �eld intensity at the cathode. The asymptotic radial velocity of the plasma beam is shown in Fig.
3 as a function of the intensity of the magnetic �eld at the cathode. In the �gures the dependence on zm is
shown by denoting B0=Bpeak = exp

�
�z2m=L2m

�
. The existence of an optimal con�guration is apparent there

too.
In the next section we examine further the e¤ect of the heat conductivity on the evolution of the plume

beyond the magnetized area.

Figure 4. Unmagnetized slab beam: the radial velocity as a function of the electron temperature for di¤erent
values of �nac.
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Figure 5. Unmagnetized slab beam: the conducted heat as a function of the electron temperature for various
values of �nac:

VI. The e¤ect of heat conductivity in a slab beam

Here we analyze the e¤ect of heat conductivity on the plume evolution in the unmagnetized region.
Because the magnetic-�eld force is zero, fB = 0 in Eq. (26), the plasma momentum in the axial direction is
constant,

v +
c2

v
= 1 + c20; v1 = 1 + c20 (42)

because of Eq. (35). We address �rst the slab geometry, d = 1 in Eqs. (32) and Eq. (33), but we keep p
unspeci�ed,

�n = �nacc
2pa: (43)

In the slab geometry the equations are reduced to one di¤erential equation:

du

dc2
=

��nacc
2(1+p)

v (�2u2 + v2 + 5c2 � �"n)
: (44)

in which v is speci�ed by Eq. (42) and �"n is determined by the requirement that

�(1) = �"n � v21 � �2u21 = 0; when d = 1.

The equation relates u and c2 and is decoupled from the equations for the dependence on �. The last
requirement determines the value of the eigenvalue �"n. It is important to note that in the slab geometry
the conducted heat at in�nity is zero. All the heat at the cathode, �(0) = �"n � 1� 5c20, is converted into
convected thermal energy and then into directed kinetic energy. In the slab geometry therefore the directed
kinetic energy and the plume expansion are potentially large if the heat conductivity is large.
Figure 4 shows u versus Te , while Figure 5 shows the conducted heat versus Te, both for various values

of �nac. It is seen in the �gures that the heat conducted ends up in the kinetic energy associated with the
radial velocity of the ions. In both �gures �A = 300V and p = 5=2. The applied voltage, the ion (xenon)
mass, and the initial temperature determine the value of c20, while the value of �nac is arbitrarily speci�ed
in order to examine the e¤ect of the heat conductivity. The radial velocity is larger when �nac is larger.
We can actually derive analytical expressions for the asymptotic limit of large values of �nac.19 At that

limit we approximate

v �= 1 �2u
2 + v2 + 5c2 � �"n �= �2u2 + 1� �"n; �2u

2
1 + 1� �"n = 0: (45)
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In this approximation the convected electron thermal energy is much smaller than the conducted heat.
Equation (44) is then simpli�ed to

du

dc2
=
��nacc

2(1+p)

�2 (u2 � u21)
: (46)

This simpli�ed equation is integrated to�
u3 � u20
3

�
� u21 (u� u0) =

��nac
�2

"
c2(2+p) � c2(2+p)0

2 + p

#
; (47)

where we allowed an initial �nite radial velocity u (z = 0) = u0. The expression for u1 when u0 = 0 is 19

u1 =

"
3��nacc

2(2+p)
0

2�2 (2 + p)

#1=3
; p =

5

2
=) u1 =

�
��nac
3�2

�1=3
c30 (48)

Thus, the solution in the slab geometry is characterized by all the conducted heat being transformed into
thermal energy and eventually perpendicular kinetic energy. The perpendicular velocity is unbounded in
that geometry and increases with the initial velocity and with the size of the coe¢ cient of heat conduction.
Figure 6 shows the dependence of u1 on �nac for two values of intial electron temperatures. The agreement
with the analytical expressions [Eq. (48) for p = 5=2] is excellent.
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 = 2 eV − Analytic Approximation
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Figure 6. Unmagnetized slab beam: the asymptotic radial velocity as a function of �nac for two electron
temperatures. A comparison of the analytical and numerical results. Shown is also the adiabatic case.

The growth of the radial velocity of the plasma beam as predicted by the analysis of this section is too
small to explain the plume divergence observed in the near �eld of the thruster. For the measured electron
temperatures the plane at which the plume crosses the axis of symmetry of the thruster should be further
away that it actually is. We thus conclude that the main cause of the plume divergence near the exit of the
plasma thruster is not the plasma pressure, but probably the magnetic �eld curvature.
We turn to examine the plume divergence beyond the cross-over plane. We approximate the plasma

beam there as cylindrical.

VII. The e¤ect of heat conductivity in a cylindrical beam

The governing equations in the case of a cylindrical beam are Eqs. (24), (25), (26), and Eq. (27), which,
for d = 2 and with no magnetic �eld, takes the form

dc2

d�
=

1

�nacc2pa2
�
�2u

2 + v2 + 5c2 � �"n
�
: (49)
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Because the area in the cylindrical beam is proportional to the square of the radius an equation relating
u and c2 decoupled from � cannot be derived as was done for the slab case. The Appendix describes the
numerical scheme for solving the equations in the cylindrical case. These equations describe the basic, and
of a general nature, phenomenon of a radial expansion of a beam (plasma or neutral gas) of a cylindrical
geometry.
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Figure 7. Unmagnetized cylindrical beam: the radial velocity as a function of the electron temperature for
di¤erent values of �nac.
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Figure 8. Unmagnetized cylindrical beam: the conducted heat as a function of the electron temperature for
various values of �nac:

In the cylindrical geometry there is a weak coupling only between the conducted heat and the convected
electron thermal energy. As the coe¢ cient of heat conductivity or the initial electron temperature is increased
the heat conducted is large. At the limit of large conducted heat, that heat is uniform along the beam. Let
us examine this asymptotic case. The last equation is approximated as

dc2

d�
= � �c

�nacc2pa2
�c � �

�
�2u

2 + v2 + 5c2 � �"n
� �= const > 0:
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Figure 9. Unmagnetized cylindrical beam: the asymptotic radial velocity as a function of �nac for two electron
temperatures. Apparent is the asymptotic limit.

Combining this equation with Eq. (24) in which we approximate v �= 1, we write the following equation:

k
d2k

dt2
= �Act1=(1+p); k � 1

a
, t �

�
c

c0

�2p+2
; Ac � ��1

"
c2p+30 �nac
�c (p+ 1)

#2
, (50)

to be solved for

k (1) = 1
dk

dt
(1) = 0 k(0) = 0 Ac = Ac (p) eigenvalue. (51)

Note that Ac is independent of �nac. For example, for p = 5=2, Ac is found numerically to be ' 1:85. From
here we obtain the conducted heat to be

�c =

r
��1
Ac

c2p+30 �nac
(p+ 1)

; (52)

which shows a strong dependence on the temperature. The velocity is found to be

u =

r
�

�1Ac
c0
dk

dt
: (53)

The velocity (53) is proportional to the acoustic velocity and is not larger for a larger heat conductivity �nac.
The temperature pro�le t(k) is independent of the heat conductivity as well at this limit.
The lack of coupling between the conducted heat and the convected thermal energy in the cylindrical

beam is a major result of this paper. A beam of a cylindrical cross section can conduct heat at a high rate
while this conducted heat does not a¤ect much the plume divergence.
For the Hall thruster the plasma beam can be approximated as a cylindrical beam beyond the cross-over

of the thruster axis. At that plane the beam (regrettably...) already has a high radial velocity. It is useful to
derive linear solutions for the equations in this limit of large conducted heat. In fact we derive in this linear
limit of the large conducted heat cylindrical beam case analytical solutions.
We approximate the radial velocity to lowest order as constant:

u0 =

r
�

�1Ac
c0
dk

dt
(54)

and as before
k (1) = 1 k(0) = 0 Ac (p) eigenvalue. (55)
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Figure 10. Cylindrical plume pro�les in the linear regime - analytical (dashed?) and numerical (solid?). Also
shown are the asymptotic analytical limits.

we �nd that

tu0 = k

r
�

�1Ac
c0; (56)

which, with Eq. (51) yields

Ac =
�

�1

�
c0
u0

�2
; �c =

�1u0c
2p+2
0 �nac

(p+ 1)
: (57)

The linear solutions are therefore

al = 1 + �1u0� c2 = c20a
� 1
p+1

l u = u0 +
�c20 (p+ 1)

�1u0

�
1� a�

1
p+1

l

�
a �= 1 + �1u�: (58)

The asymptotic value of the velocity is

u1 (1) =
�c20 (p+ 1)

�1u0
: (59)

The conditions for the heat conductivity to be considered large and for the linearization to be justi�ed are

�c =
�1u0c

2p+2
0 �nac

v (p+ 1)
� 1

�c20 (p+ 1)

�1u20
� 1: (60)

We now present numerical results for the cylindrical case. Figure 7 shows u as a function of Te for various
values of �nac. It is seen in the �gure that as �nac grows the velocity reaches asymptotically a limit value.
Similarly in Fig. 8 the normalized conducted heat is shown to be larger when �nac is larger but it does not
change along the beam propagation. It is apparent in the �gure that the conducted heat and the convected
thermal energy are decoupled.

VIII. Summary

We presented an analysis of the plume divergence due to electron pressure of a plasma beam for both
a slab and a cylindrical geometry. We have unfolded the two opposite e¤ects of the transverse magnetic
�eld. We have shown that the e¤ect of the heat conductivity is very di¤erent in the two di¤erent geometries.
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The results of this analysis are of a general nature and may apply to various plasma beams in laboratory
and in space. In the Hall thruster the measured plume divergence seems to be much larger than the plume
divergence due to the electron pressure as calculated according to the model here. We therefore suggest that
the nagnetic �eld curvature is the main cause of the plume divergence. The present analysis could also be
useful to study the e¤ects of other processes, such as charge exchange, on the plume divergence.

Appendix

As was mentioned in Section V in the case of no magnetic �eld in a slab geometry, the equation for v
becomes an algebraic relation, and the equations for u, and c2 are independent on � and are decoupled from
the equation for a. This allows us to set the temperature as the independent variable and solve for the
lateral velocity without dealing with in�nite values of � and a. The equation for u

�
c2
�
(Eq. 44) is singular

at in�nity (c2 ! 0). In order to move away from the singularity we expand the unknowns u, v, and � in
powers of c around c = 0. For the slab geometry the expansions become:

u = u1 + u2c
2 + u4c

4 + u6c
6 + u7c

7 (61)

u2 = � 3

2�2u1
u4 =

1

2u1

�
1

�2v21
� u22

�
u6 =

1

u1

�
1

�2v41
� u2u4

�
u7 = �

��nac
3v1

v = v1 � c2

v1
� c4

v31
� 2c

6

v51
� 5c

8

v71
� = �2��2�nacu1

3v1
c7 u1 parameter

Where v1 is known from the algebraic relation for v and u1 is a parameters that is found during the
solution. We use the power expansion to approximate u for a small c2 and integrate Eq. (44) in the upstream
direction. When the lateral magnetic �eld is present the equations are dependent on � through the variation
of the magnetic �eld intensity, and the entire equation set (24) through (27) must be solved numerically.
A shooting method is used to match the solutions of the two regimes; A downstream integration of the
equation set is performed down to a point where the magnetic �eld is negligible. An upstream integration of
the decoupled equation [u

�
c2
�
] is performed from the vicinity of c2 = 0 (found by the power series expansion)

to the corresponding value of c2 (at the downstream end of the zero magnetic �eld regime). The parameter
u1 is adjusted by the shooting method search algorithm until the value of u is matched from both sides
of the regime interface. This scheme also results in �nding the corresponding value for the constant energy
�ux (�"n) as the eigenvalue of the problem. Once the value for �"n is found all the other system variables
(namely a and �), in the zero magnetic �eld regime, are solved as downstream as desired.
In the case of cylindrical geometry the equation for u

�
c2
�
is not decoupled from a and we de�ned

k � 1=a = k
�
c2
�
. In this case the power expansions yield:

k = ��1
2

7

�nacu1
�1v1

c7 u = u1 � 7
2

�

�1u1
c2 u1 �1 parameters (62)

The solution was performed for the zero magnetic �eld regime only. The shooting method performs a
search over both parameters - the heat �ux (�1) and the lateral velocity (u1) simultaneusly, yielding the
initial conditions (u

�
c2 = c20

�
= u0, and k

�
c2 = c20

�
= 1).
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