
The role of the electron energy balance in Hall thruster 
plasma instabilities

IEPC-2007- 258 

Presented at the 30th International Electric Propulsion Conference, Florence, Italy 
September 17-20, 2007

Zbigniew Peradzynski1 
Institute of Applied Mathematics and Mechanics, University of Warsaw, O2- 097,Warsaw, Poland

Institute of Fundamental Technological Research, Polish Academy of Sciences, 00-049, Warsaw, Poland

Karol Makowski2, Serge Barral3 and Jacek Kurzyna4

Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 00-049, Poland

and

Michel Dudeck5

ICARE -- CNRS, 45071 Orleans Cedex 2, France 

Abstract: Using the fluid equations of Hall thruster plasma we analyze the influence of 
the  electron energy  balance  on the stability  of  ion  sound modes.  For  sufficiently  low 
frequencies the gains and losses in the source term are approximately equal,  thus the 
temperature can be in principle determined in terms of other dependent variables. This 
permits to reduce the umber of equations. It appears however, that the new system can 
have in some regions complex characteristics. This in turn implies instability of certain 
modes with frequencies lower than some critical frequency.      

Nomenclature
 β               = ionization energy for Ex. 
e                = electron charge
Ek                      =  electron energy
eI               = total current density    
mi               = ion mass
me              =  electron mass   

Na              = density of neutral atoms
ni               = ion density
Va               = neutral atoms (axial) velocity 
Vi               = ion velocity
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Te               = electron temperature
ωB              = electron cyclotron frequency
νeff              = effective electron collision frequency for the momentum transfer
νe               = electron collision frequency for the energy transfer
Ve                      = axial electron fluid velocity
Veθ             = azimuthal electron fluid velocity

I.Introduction
One of the most challenging problems in the theory of plasma is to determine effectively the conditions for the 
appearance of turbulence and numerous instabilities observed in experiments. Different methods are known and 
used. One of the less known was sketched in the book of Witham [1] in his discussion of wave hierarchies. We 
slightly develop here his ideas. To explain our approach let us start with a simple example of a system of two linear 
equations with constant coefficients         
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 has two distinct eigen-values if  a ≠ 0. Consequently the system is strictly hyperbolic. It 

has two characteristics i.e. the short waves can propagate either with speed  c1 = 1  or  c2 = a. Let us notice also that 
1/μ defines here the characteristic time scale in which the influence of RHS is manifested. If μ is large and positive 
one expects that for perturbations of large enough length, or better: of low enough frequency, ω < μ, the right hand 
side of (6) is approximately equal to zero,
                                            
                                                                      )/( µωOruv +=                                                 (7)

Using this relation in the first equation, one obtains in the limit 1/μ → 0, the reduced system 

                                                                    0)1( =++ xt uru                                                 (8)

which is a long wave approximation of system (6). Eq. (8) suggests that one may expect existence of a “lower order 
waves” propagating with the speed c0 = 1 + r .   The approximation (8) makes sense however, only if the new 
characteristic speed c0 = 1 + r  lies between the characteristic speeds of the original system (6):  c1  <   c0 <  c2   (if c1 

<  c2).   Indeed,  perturbations  satisfying  Eqs (6)  cannot  move slower  than  c1,  and faster  than  c2.   Therefore  if 
],[ 210 ccc ∉ , then at least one of the waves of Eqs (6) must be unstable in the range of high frequencies and 

moreover, the growth of instability should have the scale comparable with 1/μ. If it would be longer, then Eq. (8) 
could still be a good approximation on some time scale. This however would contradict causality. Let us note that 
this reasoning is not limited to linear equations. 

In  case  of  a  system  consisting  of  three  or  more  equations  the  analysis  becomes  more  complex  and  more 
possibilities can be encountered. Let us take for example the following hyperbolic system
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The long wave approximation ( i.e. low frequency, ω  < μ) leads in this case to                                                  
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whose characteristic speeds are  rCrC +=+−= 1,1 21 , whereas characteristic speeds of  system (9) are 
accc ==−= 321 ,1,1 . Now we have two possibilities:

1.  If   01 ≥+ r   - then system (10) is hyperbolic 
2.  If  01 <+ r  - then the system is elliptic.
In the first case we can speak of new, lower order, families of waves, provided however, that the following stability 
condition
                                                          32211 cCcCc ≤≤≤≤                 
is fulfilled. If this condition is not satisfied then some of short wave modes, of original system (9) are unstable and 
because of that the “lower order waves” (with velocities   C1, C2) cannot be formed. Obviously,  in such a case 
Eqs (10) is not a good approximation of (9).
In the second case, 1+ r < 0, we have complex characteristics, hence the Cauchy problem for Eqs (10) is ill posed: 
one encounters the Hadamard instability – increment of growth is increasing when frequency increases -shorter the 
wave more unstable it  is!  Having in mind however that  (10) was derived from (9) under the assumption that 
solution consists mostly of low frequency waves, we can not expect that the conclusion concerning the instability 
increment is true for waves of frequencies higher than μ ore close to μ. Thus μ is a critical frequency and it defines 
three scales of frequencies ω >> μ, ω    = O (μ), ω    <<  μ. Let us note also that the derivative of the RHS of the 
third equation of Esq. (9) is equal to - μ , hence it is negative, which is also a sort of stability condition, allowing one 
to derive Esq. (7)  at least in the range of low frequencies.    

`

II. The flow equations

Under the plasma quasi-neutrality condition,  ni  = ne  ,   the simple fluid description of the Hall thruster 
plasma   uses the following hyperbolic system of four equations [1,2,3]
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for  Na-  the  density  of  neutrals,  ni-  ion  density  (=electron  density),  Vi  –  axial  ion  velocity  and  Te –  electron 
temperature  in energy units.  )( 2

3
ek TE += ββ  is the ionization rate of Xenon. Here Ek is the energy of the 

“ordered motion” of electrons
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 The source term Q in (4) is defined by

                                                    )(2 2
3

eiake TNEQ +−= εβν                                                       (5)

 The Ohm law (i.e. the reduced electron momentum balance) was used to determine the electric field.  V e – the 
electron axial velocity field  can be expressed in terms of ion velocity and the total current density eI:
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IVV −= .  The total current density  I   =  I(t) (divided by electron charge e)   can be determined from the 

boundary condition ∫ =
L

UEdx
0 0  for the potential drop U0 to obtain
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The system (1)-(4) has four real characteristic velocities
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which are responsible for the propagation velocities of high frequency disturbances of neutrals,   ion sound and 
electron temperature respectively.
     If the frequency (hence the wave number) is high enough, RHS of these equations are not influencing the 
propagation velocity. For lower frequency however, its influence can be manifested very drastically. Especially, the 
electron energy equation plays an important role in such a case, since its source term (5) is composed of two large 
terms of opposite signs.  This source term introduces a relaxation time τ, related to the characteristic  frequency 
ωc = τ –1,  which is equal to  

                                                       Q
Te

c ∂
∂−=ω  .

 For much larger frequencies than ωc , the source term Q is “too slow” and the temperature is not able to relax, so Q 
is not influencing the characteristic speeds, of the electron temperature disturbances in particular. In the opposite 
case however, when  ω  <  ωc , the left hand side of Eq. (4) can be neglected, since the temperature can relax, so the 
electron temperature  can be determined from “zero  order  equation”    Q(Te,  Vi,  ni,  Na,  x)=0 in  terms of  other 
dependent variables and the system can be reduced to three partial differential equations for  Vi, ni, Na.

III. The reduced system
 
Since we postulate that for low frequencies  Q (Te, Vi, ni, Na, x) = 0 is a reasonable approximation of (4), therefore in 
principle  the  electron  temperature  may be  computed  from the  equation  Q=0 in  terms  of  other  variables.  It  is 
convenient to do it in two steps. As follows from (5) we may write Q in terms  of  Ve , Na , x , having in mind that 
Ve must be expressed later by Vi and ni  from the definition of total current density: I(t)= ni (Vi –Ve). Postulating thus 
that Te = T (Ve, Na, x)   and eliminating Ve from  )( eii VVnI −=  we derive from (3) the new ion momentum 
equation 
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 where Te is not anymore (unknown) dependent variable,  e
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 Indeed differentiating relation  Q(Te, Ve, Na, x)=0 we have 
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Summarizing, the low frequency approximation  of (1) –(4) is
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This system  has obviously different characteristics than Eqs (1-4). They are              

                 aV=0λ ,     2
,2,1 ),

2
1(1

2
1

ee
Ve

ii
Ve

i
i T

mm
T

m
V +±+= θλ            where   θ = 





−

i
Vee n

ITT
e,

To estimate the values of interesting for us quantities we have used some results of numerical simulation as 

presented in [2,3] and the following approximation       3
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To illustrate, that the characteristic speeds may become complex, we take the parameter values from the numerical 

simulations in [3] at the sonic line, where  Te = 12 eV,   Ek = 3 eV,  then 21.0, =kE
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  noticing that 

the second and third terms  in the denominator of last formulae can be neglected  we estimate  ≈θ  - 10 eV, So it is 

negative!  On the other hand the term    
2),

2
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m  in the expression for the characteristic velocities is small as 
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compared to θ
im

1
.  This indeed shows that for some values of discharge parameters the characteristics of the new 

system of equations may become complex valued in a certain region of the flow. This however, implies immediately 
the instability of propagating disturbances. The typical value for the critical frequency in case of SPT-100 is  ωc= 
107. As follows from analysis made in Sec II we should expect instabilities for frequencies ω<< ωc, say lower than 
106. 

IV Conclusion

Our analysis suggests that the energy equation may significantly contribute to the generation of instabilities in the 
range of frequencies, usually attributed to so -called transit time instability. In [2], this instability was studied on the 
basis of isothermal model of plasma discharge. It  has been shown that the ion sound wave moving in the same 
direction as the flow is unstable in the supersonic domain. Our present work shows that the specific properties of the 
energy balance in Hall thruster plasma can considerably influence these results enhancing the instability.  

Acknowledgments
This research work was done in the frame of CNRS-France and IPPT-PAN-Poland cooperation within the research 
group CNRS/CNES/SNECMA/Universities 2759 ``Propulsion Spatiale a Plasma''.

References
Periodicals
      1 Barral S., Makowski K., Peradzynski Z., Gascon N., Dudeck M., “Wall Material Effects in Stationary Plasma Thrusters II.  
 Near-Wall and In-Wall Conductivity” Physics of Plasmas, volume 10,page 4137,2003
      1 Barral, S., Makowski, K., Peradzyński, Z., and Dudeck, M., “Transit-time instability in Hall Thrusters”,  Physics of Plasmas, 
Vol. 12 : 073504 (2005)
      2  Barral, S., Ahedo, E., – “Theoretical Study of the Breathing Mode in Hall Thrusters”Proc. 42nd AIAA Joint Propulsion 
Conference, number 2006-5172, Sacramento2006

Books
     3 Witham, G.B., Linear and Nonlinear Waves, Wiley Interscience, New York, 1974

The 30th International Electric Propulsion Conference, Florence, Italy 
September 17-20, 2007

6


	Nomenclature
	I.Introduction
	Under the plasma quasi-neutrality condition, ni = ne ,  the simple fluid description of the Hall thruster plasma   uses the following hyperbolic system of four equations [1,2,3]
	III. The reduced system
	Acknowledgments
	References

