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A one-dimensional Quasineutral Particle In Cell (QPIC) simulation of the plasma along a field line in a
Hall thruster is investigated, assuming a guiding center model of electron motion. The influence of magnetic
mirror effects on the electric field is assessed numerically for different magnetic field and ion density profiles.
These results suggests that the Boltzmann relation used in hybrid models generally fails to provide a reasonable
estimate of the electric field along field lines, even in the absence of magnetic field gradient. The inclusion of
the magnetic gradient force in Boltzmann relation mitigates this issue but remains too crude an approximation
to quantitatively estimate the electric field in typical Hall thruster magnetic configurations. Finally, simula-
tions suggests that the centrifugal force acting on electrons in actual axisymmetric geometries contributes only
marginally to the ambipolar field.

Nomenclature

b Unit vector along B, b≡ B/B u‖ Electron guiding center velocity along B
B, B Magnetic field (vector, magnitude) u⊥ Electron guiding center velocity perpendicular to B
e Absolute electron charge v Electron velocity vector
E‖ Electric field along B v⊥ Electron velocity in the drifting frame
E⊥ Electric field perpendicular to B vE , vE Electron drift velocity, vE ≡ E×B
jew Current density of electrons impinging walls φ Plasma potential
jiw Current density of ions impinging walls Φw Potential drop across the wall sheath
me Electron mass κ Boltzmann constant
ne Density of electrons µ Electron magnetic moment, µ ≡ 1

2 mev2
⊥/B

ni Density of ions µ̄ Average magnetic moment of all electrons
nn Density of neutrals ν Momentum transfer frequency for electrons
r Radial coordinate, r ≡ ζ + const ωce Electron cyclotron frequency
Te Total electron temperature σ Secondary emission yield
Te‖ Electron temperature along B ζ Field line curvilinear coordinate
Te⊥ Electron temperature perpendicular to B
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I. Introduction

A rich variety of Hall thrusters simulations has emerged in the past 15 years, ranging from fully fluid quasineutral
steady 1D models to fully kinetic transient 3D models. Owing to the balanced compromise they offer between

description accuracy, manageability and computational requirements, 2D quasineutral hybrid models have become the
tool of choice for many engineering applications. A severe shortcoming of hybrid simulations resides, however, in
their incapacity to describe the influence of magnetic field gradient forces on the electron dynamics. Several studies
have underlined the role of magnetic mirrors in the confinement of the plasma away from the walls and in the ion beam
focusing.1–4 The role of the centrifugal force induced by the drifting motion of electrons in a cylindrical geometry has
also been pointed out.5 Magnetic mirroring and finite curvature effects are yet more stringent in small Hall thrusters,
in cylindrical Hall thrusters and in the closely related HEMP thrusters.3

The literature does not always provide, however, a consistent and accurate picture of the effect of magnetic mirrors.
Many authors have for instance stated that magnetic gradients do not affect Boltzmann relation,

κTe
∂ne

∂ζ
−nee

dφ

dζ
= 0. (1)

M. Keidar and I. D. Boyd have acknowledged the effect of magnetic field gradients and have proposed the relation2
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The above relation relies, however, on a somewhat inconsistent set of assumption: the mirror force term assumes strong
anisotropy for the electron pressure tensor (Te⊥ ≈ Te � Te‖), and yet the pressure gradient term implicitly assumes
Te‖ ≈ Te. Indeed, neglecting the centrifugal force and the net electron current along field lines, the actual momentum
conservation law along B reads:6
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which cannot, in principle, be reduced to Eq. (2). This law also clearly shows that Boltzmann relation does not
hold in the case where the electron temperature anisotropy is significant, which is precisely what one expects in the
acceleration region of Hall accelerators. The study of magnetic mirrors appears therefore very difficult to approach
from a purely analytical viewpoint, and no obvious way exists to account for such effects in hybrid simulations where
only the total temperature of electrons is known.
Magnetic gradient effects can be efficiently modeled, however, using a recently devised method whereas the quasineu-
trality assumption and the Guiding Center (GC) approximation for electron motion are combined.6, 7 Although the
method is computationally more intensive than hybrid modeling, it remains orders of magnitude lighter than full-
fledged kinetic-Poisson simulations, making it a most relevant choice for an engineering simulation tool. Added to
this, the particle description used by this method easily lends itself to parallelization, allowing it to take full advantage
of the current trend towards affordable multiprocessing.
The present paper reports on an ongoing effort to adapt the combined GC/Quasineutral Particle-In-Cell (GC-QPIC)
method6, 7 for the purpose of Hall thruster modeling. Although the model is ultimately intended to resolve an ax-
isymmetric 2D domain, the present investigations shall be limited to the case of a single magnetic field line in slab or
cylindrical geometries. The simulation assumes an imposed distribution of ions and a given electric field E⊥ across
magnetic lines. The electric field E‖ along the magnetic field and the electron distribution function (given in terms
of guiding center variables) are solved self-consistently. The model takes into account electron-neutral collisions in
the bulk as well as a self-consistent model of the wall sheath for electron-wall collisions. After an assessment of its
proper convergence in a typical case, we shall use the model to discuss the influence of magnetic mirrors and of the
centrifugal force on the ambipolar field along the magnetic field. The results are compared to the classical isothermal
Boltzmann relation, Eq. (1), which is used in hybrid model to estimate the electric field along B.

II. Physical and numerical model

A. Motivations and prior art

To the best of our knowledge, the QPIC formalism has never been considered within the context of Hall discharges
while the GC approximation has only been used sparsely in some analytical studies. There exists, however, a large
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body of literature on kinetic-Poisson simulations, where the electric field is computed from Poisson equation and where
the dynamics of electrons directly follows the Lorentz force law. The drawbacks of such simulations are well-known,
namely:

• very high computational requirements due to the need to resolve the plasma frequency, the electron cyclotron
frequency and the spatial scale associated with the Debye length; the use of implicit integration can somewhat
relax the condition on time and space discretization,8 but the cyclotron motion must still be resolved,

• the necessity to modify physical constants and/or geometrical parameters to perform simulations with reason-
able resources and within a reasonable time frame; common modifications of the physical constants include
alterations of the space permittivity and of the ion-to-electron mass ratio;9, 10 common modifications of the
geometry include domain downscaling11 and reduction to a domain subset.8

It is worth noting that the phenomena taking place at the Debye length scale and at the plasma frequency are improperly
described by most such simulations, either as a result of implicit integration or of physical constants alteration. It would
appear more sensible, therefore, to assume a priori electric quasineutrality rather than to rely on Poisson equation,
thus removing any related discretization constraint. This idea is central to many fluid and hybrid simulations, but its
practical implementation in PIC electron simulations is relatively new.7

The GC approximation reposes in turn on the fact that for electron cyclotron radii smaller than the characteristic
gradient length of the E and B fields, the trajectory of the electron guiding center can be effectively decoupled from
the cyclotron rotation. Combined with the QPIC formalism, the GC approximation offers the following advantages:

• the constraint on the time step is strongly relaxed, because the cyclotron motion does not need to be resolved
and the time step is limited only by the CFL condition with respect to the guiding center velocity

• in the common case where the statistical angular distribution of electrons with respect to their guiding centers
is uniform, the phase space can be reduced by one dimension through a substitution of the velocity vector
v = (vex,vey,vez) by a parameterization in terms of the magnetic moment µ and of the velocity u‖ along magnetic
field lines,

• several numerical optimizations are made possible by decoupling the motion along and across fields lines, taking
advantage of the fact that guiding center trajectories approximately follow field lines.

B. Governing equations

This work constitutes a preliminary assessment of the GC approximation in Hall thrusters, limited to the simulation
of a single magnetic field line in slab and axisymmetric configurations, accounting for possible field line curvature
and magnetic gradients. The profiles B(ζ ), E⊥ (ζ ) and ni (ζ ) are considered inputs of the model. The electric field
E‖ (t,ζ ) and the electron distribution fe

(
t,ζ ,u‖,µ

)
are determined self-consistently so as to maintain quasineutrality

with the ion background. The assumption of a steady ion background is justified in view of the fact that the dynamics
of electrons along the field lines is substantially faster than the variations of density induced by the dynamics of ions.
The numerical integration of the classical equation of motion for electrons in electric and magnetic fields, namely

me
dv
dt

=−e(E+v×B) , (4)

limits the integration time step to ∆t � 1
ωce

. This constrain can be avoided by the use of the GC approximation, in
which only the motion of the guiding center electrons is resolved. In many cases, the orbital angles of electrons are
equidistributed and one can reduce the electron phase space to variables u‖, µ , whereas the latter is at the leading order
(i.e. for infinitely small gyroradius) a constant of motion in slowly changing fields. In cylindrical geometry and in the
absence of azimuthal fields (Bθ = Eθ = 0), the leading order equations for the motion of the guiding center read,

du‖
dt

=− e
me

E‖−µ
dB
dζ

+
v2

E
r

br, (5)

u⊥ = vE , (6)

where the right hand side of Eq. (5) sums the contributions of the electrostatic field, of the magnetic mirror force and
of the centrifugal force, with br the projection of b on the radial axis. Unlike the mirror force, the centrifugal force
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acts uniformly on all electrons notwithstanding their kinetic state, making it possible to integrate this force into an
“effective” electric field,

Ẽ‖ ≡ E‖−
me

e
v2

E
r

br. (7)

It is readily noted that Ẽ‖ and E‖ coincide in slab geometry (r→ ∞).
Let us now consider the complete momentum conservation of electrons along the magnetic field lines, which general-
izes the expression of J. Joyce et al.7 to account for the centrifugal force,

− eẼ‖ =
|B|
ne

∂

∂ζ

(
neκTe‖
|B|

)
+ µ̄

∂ |B|
∂ζ

+νemeue‖+
1
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∂
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(
nemeue‖

)
. (8)

While this equation does not by itself enforce quasineutrality, a simple modification was suggested by J. Joyce et al.7

to ensure that quasineutrality is satisfied in the steady state. The altered version of the above equation used in the QPIC
method to estimate the electric field along field lines reads,

− eẼ‖ =
|B|
ni

∂

∂ζ

(
niκTe‖
|B|

)
+ µ̄

∂ |B|
∂ζ

+νemeue‖, (9)

where the density of ions ni is used instead of ne in the pressure term. The drag term (last term on the right hand side)
is disregarded in the present model since the net current along the field lines is typically negligible, which has been
verified in simulations. The electric field hence calculated can be shown to drive electrons from regions with negative
space charge towards regions of positive space charge so as to restore quasineutrality.6

C. Sources, sinks and collisions

Whenever an electron is recombined at the walls, a new electron is introduced to restore the global neutrality over the
field line. The position of the new electron on the field line is random, with all positions ζ being equiprobable. The
velocity of new electrons is sampled from a Gaussian probability distribution of variance Te0 and their direction is
determined assuming statistical spherical uniformity, from which u‖ and µ are computed.
Electrons that reach the edge of a wall sheath may be reflected elastically on the sheath (which solely changes the sign
of u‖), or may be either backscattered or recombined at the surface if they have enough energy to cross the sheath.
The simulation does not distinguish between backscattered and true secondaries and adopts at the moment a relatively
crude model of electron-wall collisions where only 0 or 1 electron can be emitted, assuming a constant “secondary
emission” coefficient σ . The sheath is considered perpendicular to B.
The sheath potential is in theory determined so as to repel enough electrons for the ion current to balance the net
current of electrons at the walls. The ion current density at the sheath edge is determined from Bohm condition,

jiw = eni

√
κTe‖
mi

. (10)

A common choice for the computation of the sheath potential is the algorithm of Parker et al.12 In this method,
the number Ni of ions impinging the walls during a time step is determined from the above formula, and electrons
impinging the wall are sorted on the basis of their velocity u‖. The sheath potential is then set to the energy of the Ne-th
fastest electrons where Ne = Ni/(1−σ). This algorithm ensures that the number of electrons absorbed by the walls
is at any time equal to the number of ions, but we have observed that it suffers from large statistical fluctuations in the
common occurrence where Ni is small. A method inspired from the algorithm of F. Taccogna13 was thus preferred,
where the sheath is modeled as a capacitor which potential increases whenever a negative net charge builds on the
wall. The potential drop across the sheath is thus calculated from,

dΦw

dt
=

1
c

[ jew (1−σ)− jiw] , (11)

where c is an artificial surface capacitance and jew accounts only for electrons which velocity u‖ is sufficient to
overcome the sheath potential Φw. The capacitance is determined empirically to ensure a satisfactory damping of
statistical fluctuations while keeping the accommodation time reasonably short.
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The energy and direction of backscattered electrons is determined randomly by assuming that they are thermalized by
the wall at a temperature Tw, with the additional condition that their energy cannot be greater than the energy of the
impinging electron. These electrons then gain additional energy in the sheath and are reintroduced in the bulk with
new values of u‖ and µ .
Only elastic collisions with neutrals are considered in the bulk. A constant density of neutrals nn is assumed, and the
collision cross-sections assumed are those for electron-xenon momentum transfer from A. V. Phelps.14 The Monte-
Carlo implementation of collision events is based on the null-collision method.15 The pre-collision kinetic state is
determined from u‖, vE , µ and from a random gyrophase. The energy remains unchanged after the collision, but a new
random direction is sampled from which the new u‖ and µ are determined.

III. Simulation

A. Parameters

The field line is discretized into 20 cells which cross-sections varies according to the section of the magnetic flux
tube, i.e. in inverse proportion to B. The “temperature” of the electron source is Te0 = 10eV, the energy of sec-
ondary/backscattered electrons emitted by the walls is Tew = 5eV and the secondary emission yield is σ = 0.5. The
electric field perpendicular to B is set to E⊥ = 10kVm−1 and the density of neutrals to 1019 m−3. Simulations in slab
geometry assume walls at positions ζ =±1cm. Simulations in axisymmetric geometry assume walls at radii R0 = 3cm
and R1 = 5cm. The various ion density profiles ni (ζ ) and magnetic field profiles B(ζ ) considered in simulations are
shown in the Fig. 1.

(a) (b)

Figure 1: Profiles of (a) magnetic field and (b) ion density considered in simulations.

B. Numerical implementation

Equation (5) is integrated numerically in time using the Semi Implicit MidPoint (SIMP) pusher developed by V. Fuchs
and J. P. Gunn.16 This scheme is essentially a modified second-order Runge-Kutta scheme which, like the leapfrog
scheme, is area-preserving. Unlike the leapfrog scheme, however, it allows both the velocity and the position to be
known at the same instants, which for the QPIC method is essential to evaluate the electric field. The application of
the SIMP scheme to the motion along field lines raises,

un+1/2
‖ = un

‖−
(

e
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Ẽn
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dζ

)
∆t
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where upper indexes pertain to time discretization. The SIMP scheme requires thus two evaluations of Ẽ per time step,
at times tn and tn+1/2. For each evaluation, Ẽ‖ is first calculated on the grid using the discrete counterpart of Eq. (9)
and is then interpolated on the electrons, as in regular PIC simulations.
The C++ code was parallelized with OpenMP. Execution on a quad-core multiprocessor allowed a speed-up of 2.6,
which corresponds to a parallel efficiency of 65%. Code optimization was mostly governed by the need to remain as
long as possible in the parallel region to avoid the large cost of leaving and entering again parallel regions. In order to
reduce excessive communication between processors, a separate random number generator and a lightweight copy of
the main grid containing a fraction of the electron population is affected to each processor. Only the reduction of the
grids to one single grid and the computation of the electric field from data precomputed in the parallel region need to
be realized in a single thread. Attention was also paid to reduce as much as possible the size of the data fields to fit the
size of cache lines and to keep the whole data set within the L2 cache.

C. Results

1. Numerical convergence

Numerical convergence is illustrated using a simulation in slab geometry, starting from somewhat arbitrary initial
conditions. As mentioned earlier, the QPIC simulation takes as input the density profile of ions ni (ζ ), while the density
of electrons ne (t,ζ ) is an output of the model. For illustration purposes, the initial profile ne (ζ , t = 0) was deliberately
chosen so as to break the plasma neutrality at a local level (i.e. ni 6= ne in each cell), but such that quasineutrality is
satisfied at a global level over the whole field line. Figure (2) shows the evolution of the electron density and of
the electron temperature over different time scales. Local quasineutrality is recovered over the smallest times scale
(∼ 10−7 s), after which time the fluctuations of electron density become meaningless, at less than ±2% as can be
appreciated from Fig. 3. Figure 2 suggests that the (unphysical) characteristic time scale for this relaxation to local
neutrality is of the order of a few wall-to-wall bouncing periods. This is clearly much larger than the physical time scale
set by Poisson equation, but would suffice to recover quasineutrality during an ion transport time step in the farther
perspective of a combined QPIC-electron/PIC-ion simulation. The temperature stabilizes after ∼ 5× 10−6 s, which
roughly corresponds to the relaxation time expected with regards to electrons-neutral collisions. In latter simulations,
only this long-term quasi-steady state shall be discussed.

2. Simulations in slab geometry

We shall now compare the quasi-steady electric field E‖ computed self-consistently to the one estimated from the
classical isothermal Boltzmann relation (1) and from the generalized relation (2) proposed by M. Keidar and I. Boyd.2

Since the goal of such comparison is mainly to assert the accuracy of hybrid models where the isothermal Boltzmann
relation is used, the temperature assumed in the case of the Boltzmann and generalized Boltzmann relations is the
average of the total temperature Te = 1

3 Te‖+ 2
3 Te⊥ over the field line.

The simulations of Fig. 4 assume a constant density profile of ion ni0 and a shifted parabola for the magnetic field,
B1 (ζ ) = αζ 2 + β . The Boltzmann relation raises in this case the trivial solution E‖ = 0, while the self-consistent
formulation expectedly predicts an electric field that would repel ions away from the magnetic mirrors. This effect
is significantly over-predicted by the generalized Boltzmann relation, mainly because the average value of Te over
the field line becomes a very poor approximation of Te⊥−Te‖ in the region where ∇B is large [compare Eq. (2) and
Eq. (3)].
In an ions+electrons simulation, the ion-repelling field of Fig. 4 would eventually deplete the plasma near the walls
and result in a density profile with a maximum near the channel centerline. In fact, if one neglected two-dimensional
effects altogether and considered that ions move along the simulated field line, the electric field E‖ would actually be
such that ions are attracted towards the walls in order to satisfy Bohm condition at the sheath edge. For these reasons,
and consistently with the typical radial profile of plasma density measured in experiments,17 the profile ni1 (ζ ) of Fig. 1
is considered for the simulations of Fig. 5. Just as in the case of a constant density profile, the Boltzmann relation
gives a rather unrealistic estimate of the electric field. Its generalized version provides in this case a better estimate,
but remains quantitatively very inadequate. The sign of the electric field and plasma potential shown on Fig. 5 is more
consistent with what is usually expected in Hall accelerators.
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Figure 2: Time evolution of the electron density ne and temperature Te‖ in a slab domain, assuming a constant density
of ions ni = ni0 and a symmetric confining magnetic field B = B1.

Figure 3: Electron density at time t = 10−5 s for the simulation of Fig. 2.
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(a) (b)

(c) (d)

Figure 4: Long term quasi-steady profiles in a slab domain assuming a constant ion density ni = ni0 and a symmetric
confining magnetic field B = B1. (a) Comparison between the computed electric field E‖ and the prediction from
the classical and generalized Boltzmann relations. (b) Plasma potential. (c) Electron energy distribution function.
(d) Electron temperature.

(a) (b)

(c) (d)

Figure 5:

Long term quasi-steady profiles in a slab domain assuming an ion densityprofile ni = ni1 rarefied near the walls and a
symmetric confining magnetic field B = B1. (a) Comparison between the computed electric field E‖ and the prediction
from the classical and generalized Boltzmann relations. (b Plasma potential. (c) Electron energy distribution function.
(d) Electron temperature.
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3. Simulations in axisymmetric geometry

The quasi-steady results of simulations in an axisymmetric domain without and with magnetic field gradient are shown
in Fig. 6 and Fig. 7, respectively. The simulation of Fig. 7 accounts for the typical asymmetry of the divergence-free
magnetic field in an axisymmetric domain.
Just as in the case of a slab geometry, the Boltzmann relation and its generalized version2 give poor estimates for
the electric field. Even in the case of a constant magnetic field, the Boltzmann relation strongly overestimates the
electric field, due to the fact that the average value of Te = 1

3 Te‖+ 2
3 Te⊥ on the field line overestimates the value of

Te‖, particularly at the walls [compare Eq. (1) and Eq. (3)]. Both simulations suggest that the centrifugal force plays
at most a marginal role in shaping the electric field.

(a) (b)

(c) (d)

Figure 6: Long term quasi-steady profiles in an axisymmetric domain assuming an ion density profile ni = ni1 rarefied
near the walls and a constant magnetic field B = B0. (a) Comparison between the computed electric field E‖ and
the prediction from the classical and generalized Boltzmann relations. (b) Plasma potential. (c) Electron energy
distribution function. (d) Electron temperature.

IV. Conclusion and perspectives

The QPIC method combined to the guiding center approximation has been successfully tested in one dimension to
simulate the dynamics of electrons along a field line in typical Hall thruster conditions and magnetic configurations.
The results obtained thus far suggest that magnetic mirrors provide a dominant contribution to the ambipolar field
along the magnetic lines, and that this contribution cannot be reliably estimated with a generalized isothermal Boltz-
mann relation.2 The failure of the classical and generalized Boltzmann relations can be attributed to both the large
electron pressure anisotropy and to the one-dimensional electron temperature gradient along the field lines. The cen-
trifugal force appears to contribute in a negligible way to the electric field along the magnetic field lines and is largely
dominated by the effects of the pressure gradient and magnetic mirror force.
The solver developed in this work is ultimately intended to be used within a 2-dimensional (r, z) simulation for each
field line independently, in conjunction with a standard 2D electrostatic PIC solver for ions. In this context, the ob-
servation that the QPIC solver achieves approximate local quasineutrality within a few wall-to-wall bouncing periods
is important, as it ensures that quasi-neutrality can be in practice recovered between two subsequent time steps of the
ion PIC solver. From the implementation side, while the current solver already takes advantage of several fine-grained
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(a) (b)

(c) (d)

Figure 7: Long term quasi-steady profiles in an axisymmetric domain assuming a density profile ni = ni1 rarefied near
the walls and an asymmetric confining magnetic field B = B2. (a) Comparison between the computed electric field
E‖ (with and without centrifugal force) and the prediction from the classical and generalized Boltzmann relations.
(b) Plasma potential. (c) Electron energy distribution function. (d) Electron temperature.

parallelization opportunities to optimize its execution on symmetric multi-processing architectures, simulations in 2
dimensions (i.e. with several field lines) will likely require the use of a distributed memory system. Future studies will
thus focus on devising a 2D solver allowing coarse-grain parallelization, i.e. able to limit the communication over-
head incurred by the diffusion of electrons between processors affected to different field lines. Independently of such
implementation issues, a more complex physical model of electron-wall interactions and a more exhaustive model of
electron-neutral collisions shall be implemented.
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