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Recent advances in the one-dimensional non-linear theory of the breathing mode in Hall thrusters are reviewed, with
an emphasis on the physical interpretation of the stability criterion. Pursuing the apparent analogy between the one-
dimensional model and predator-prey dynamics, a simple predator-prey model is derived which, unlike the marginally
stable Lotka-Volterra model, possesses distinct regions of stability and instability. A correlation of this improved
predator-prey model with the one-dimensional theory suggests that instability results from a delayed feedback between
ionization and avalanche electron multiplication, incurred by the transit of neutrals when the ionization region begin
upstream of the avalanche region.

Nomenclature

fe, fi Electron and ion distribution functions
I Discharge current
` Length of the discharge column
L Length of the predator-prey dynamics region
n Plasma density
N Density of neutrals
N̄ Density of neutrals in the steady state
Q0 Flux density of neutrals in the injection plane
v Velocity of expelled ions
V Velocity of neutrals
β Electron multiplication rate
γ Effective local ionization rate
Ψ Local propensity to electron avalanche multiplication
τ Transit time of neutrals in the pre-ionization region

I. Introduction

BREATHING discharge current oscillations constitute one of the most characteristic phenomenon of Hall accelerator
discharges, and one of the first to be successfully recovered in numerical simulations.1, 2 Yet, the physics at play
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has for long remained elusive. The interpretation of this mode as a predator-prey ionization cycle1 has de facto gained
wider acceptance than other semi-empirical theories,3, 4 but this acceptance has remained a matter of trust and intuition
in the absence of a compelling validation against simulations or experiments.
A comprehensive mathematical model of the breathing mode based on first principles has been recently derived.5, 6

The model obtained for linear modes5 has been shown to reduce in substance to a linearized predator-prey model.
Non-linear modes have been in turn identified to relaxation oscillations.6 The non-linear modes predicted by a simple
model have been unambiguously shown to recover the mode frequency, the back-and-forth motion of the ionization
front and the shape of discharge current pulses predicted by numerical simulations.6

In this work, the reduction of the one-dimensional model of ionization oscillations to a volume-averaged model is
investigated, with the intent to improve and validate the predator-prey interpretation.1

II. Summary of the one-dimensional theory of breathing oscillations

A. Model

The formal derivation of the non-linear one-dimensional theory of breathing oscillations is given elsewhere in details,6

and we shall limit ourselves to a concise summary of its governing principles. Assuming that the discharge potential
applied between the anode (x = 0) and the cathode (x = `) is constant,∫ `

0
Edx = const, (1)

one can use the Boltzmann equations for ions and electrons to show6 that the secular behavior (i.e. the long term
trends) of the discharge current I and of the distribution functions fi and fe obeys,

dI
dt

= IJ (N) , (2)

fe = IFe (N) , fi = IFi (N) , (3)

where J , Fe and Fi have a global functional dependence on the density of neutrals, meaning that I−1dI/dt and the
local values of I−1 fe and I−1 fi depend at any moment on the whole profile N (x) within the discharge column.
The interpretation of Eq (2) is the following: when the density of neutrals N is “too large”, ionization makes the
discharge current to increase exponentially in time, at a rate that depends on the excess of neutrals. This avalanche
instability follows from the excess production of ions, which in turn draw more electrons into the discharge to maintain
quasineutrality. Owing to the constant discharge potential, these new electrons have enough energy to further enhance
ionization, leading to avalanche ionization. Conversely, the discharge current decreases continuously when N is too
small. Since the dynamics of charged species is much faster than that of neutrals, the shape of the distribution functions
of charged species remains in a quasi-equilibrium with the profile of N, notwithstanding the variation of the plasma
density in proportion to I predicted by Eqs (3).
Any increase of discharge current and plasma density subsequent to an excess of neutrals results, however, in a de-
pletion of neutrals that eventually prevents the continuation of the avalanche process. The current then decreases
until the repletion of neutrals is sufficient to trigger again avalanche ionization. This is the essence of the mechanism
of breathing oscillations, which in its main lines is consistent with the qualitative descriptions of Boeuf et al.2 and
Fife et al.1

Skipping the details,6 Eqs (2, 3) eventually lead to a simple model of ionization oscillations,

dI
dt

= I
∫ `

0
Ψ ln

N
N̄

dx, (4a)

∂N
∂ t

+V
∂N
∂x

= −γNI, (4b)

N (x = 0) =
Q0

V
. (4c)

where Eq. (4a) is obtained by linearization of functional J in Eq. (2), and where Eqs (4b, 4c) describe the advective-
reactive transport of neutrals, introduced at the anode with a constant flow rate. Function Ψ(x) can be though of as the
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Figure 1. Idealized shapes of the effective ionization rate (γ) and of the propensity to electron avalanche multiplication (Ψ) inferred from
numerical simulations5 .

sensitivity of electron avalanche multiplication to a local perturbation of the density of neutrals, while function γ (x)
can be identified to an effective ionization rate that integrates the spatial variations of the electron density. N̄ (x) is the
steady-state density profile of neutrals.

B. Typical behavior

The one-dimensional model recovers the main characteristic features of the breathing mode highlighted by Boeuf et al.2

and others,7–10 such as the slow progression and fast recession of the ionization front or the shape and large mag-
nitude of discharge current oscillations. Figure 2 illustrates the predicted discharge evolution with a low-current
startup. The assumed shapes of γ and Ψ, shown on Fig. 1, are given by γ = 2exp [−16(x/`−0.45)2] and Ψ =
2exp [−16(x/`−0.5)2] and closely fit the actual functions extracted from conventional numerical simulations.5

The limit cycles shown by Fig. 1 are in all respects similar to those of typical numerical simulations.2, 5, 8–10
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Figure 2. Convergence of the one-dimensional model (4) to a limit cycle with a low-current, gas-filled startup. The phase portrait shows the
coupled evolution of the discharge current and of the average gas density within the domain. The parameters are ` = 4cm, V = 250ms−1,
Q0 = 5×1021 m−2s−1, Ī = 4A, γ0 = 4×103 s−1A−1, Ψ0 = 2×107 s−1m−1. The assumed profiles γ(x) and Ψ(x) are shown on Fig. 1.

C. Stability

An asymptotic study of model (4) when the typical plasma to gas density ratio n/N is very small can be performed to
show that a sufficient condition for the existence of ionization oscillations is:∫ `

0
Ψ(x)γ

′ (x)dx− γ (0) [Ψ(`)−Ψ(0)] < 0. (5)
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Interestingly, it can be demonstrated that the exact same condition is necessary and sufficient for the model to be
linearly unstable in the small n/N limit. The above relation can be simplified by arguing that γ and Ψ are negligible
in the anode and cathode plane, in which case instability is expected when,∫ `

0
Ψ(x)γ

′ (x)dx < 0. (6)

We note that the relation
∫ `

0 Ψγ ′ =−
∫ `

0 Ψ′γ always holds for functions vanishing at both ends, which allows condition∫ `
0 Ψγ ′< 0 to be objectively interpreted as “function γ is located before Ψ”, since it is mutually exclusive with

∫ `
0 γψ ′<

0, i.e. with the postulate “function Ψ is located before γ”.
Summarizing (in a less formal language) we may succinctly interpret this condition as follows:

For small plasma-to-gas density ratios, ionization oscillations occur whenever the ionization zone begins
upstream (from the perspective of gas transport) of the electron avalanche region.

This interpretation readily suggests that instability may relate to the time delay incurred by the transit of neutrals from
the beginning of the ionization region to the electron avalanche multiplication region, a conjecture which legitimacy
shall be assessed in the sequel with a modified predator-prey model.

III. A better predator-prey model

A. Background

The interpretation of breathing oscillations suggested by Fife et al.1 is based on the classical Lotka-Volterra model:

dn
dt

= βNn− v
L

n, (7a)

dN
dt

= −βNn+
V
L

N, (7b)

where n is understood as the volume-averaged plasma density and N as the volume-averaged density of neutrals.
Although this model is mostly conform to the intuition, the birth term for neutrals appears quite unphysical: it implies
that neutral enter the ionization region at a rate proportional to N, when in fact neutrals are introduced in the channel
at a constant rate. This statement also breaks causality by stating that neutrals “know” their density in the ionization
region before they actually enter it. Notwithstanding phenomenological considerations, the Lotka-Volterra equations
are unable to determine the stability (or instability) of the system: the amplitude and frequency of oscillations are
solely determined by the initial conditions, as illustrated by Fig. 3. This often overlooked property also implies that
the frequency of linear modes1 may not reflect that of non-linear modes, as confirmed by numerical simulations.5
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Figure 3. Oscillations predicted by the classical predator-prey model (7) with a low-current, gas-filled startup. The limit-cycle is solely
determined by the initial conditions. The parameters are derived from those of Fig. 2, assuming that the length of the ionization region
represents approximately half of the discharge column length: L = `/2 = 2cm, V = 250ms−1, v = Q0βL/V = 14kms−1, β ≈

∫ `
0 Ψ/N̄dx =

3.5×10−14 m3s−1.
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Figure 4. Behavior of the constant gas flow predator-prey model (7a, 8), with a low-current, gas-filled startup. This model is unconditionally
stable. The parameters are those of Fig. 3, with Q0 = 5×1021 m−2s−1.

For these reasons, the original Lotka-Volterra equations are seldom used as such in modern ecological dynamics.
Ecological models usually include various processes such as stocking (the continuous supply of a species), harvesting
(the continuous removal of a species) and time delays, which ultimately determine the stability of the system. With this
perspective, it is tempting to modify Eq. (7b) by representing the constant flow rate of the working gas with constant
prey stocking,

dN
dt

= −βNn+
Q0

L
, (8)

where the stocking rate is Q0/L. It can be easily shown, however, that this system is unconditionally stable and thus
of little interest to explain ionization oscillations (see Fig. 4).
Recalling the instability criterion given in Sec. C, the lack of unstable solutions in the above predator-prey models is
not totally unexpected as these models do not contain any notion of location regarding the ionization and avalanche
regions.

B. Formulation

Integrating locational information in a zero-dimensional model while retaining the essence of the ionization mecha-
nism is not as straightforward a task as it may seem. An obvious way to account for a possible shift between the ion-
ization and avalanche regions would consist in adding a delay τ before the population N influences electron avalanche
multiplication, changing N (t) for N (t− τ) on the right hand side of Eq. 7a. This indeed provides for unstable modes,
but misses the fact that most neutrals are actually already in the avalanche zone when avalanche occurs and provide
thus an instantaneous feedback which deeply affects the dynamics of the system. Other obvious formulations in terms
of classical time-delayed predator-prey models have been found equally unsuitable to recover the behavior predicted
by the one-dimensional model.
Doubtlessly, the reduction from one to zero dimension invariably implies compromises, but it turns out that a fairly
realistic behavior can be recovered by distinguishing the population of neutrals in the avalanche region from the
population in the pre-ionization region, i.e. in the part of the ionization region located upstream from the avalanche
region (when such exists). The corresponding model is derived formally in Appendix A and reads,

dI
dt

= β I (N− N̄) , (9a)

dN
dt

= −γIN +
Q0

L
exp
[
−γ

∫ t

t−τ

Idt
]
. (9b)

Noting that N̄, β and γ are constants, the above model can be considered formally identical to the Lotka-Volterra
model (7) with I = (β/γ)n, save for the stocking rate on the right hand side of Eq. (9b) which also acounts for pre-
ionization. A typical low-current startup of the model is shown on Fig. 5, where the parameters have been chosen to
remain in a loose consistence with those of Fig. 2.
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Figure 5. Convergence of the modified predator-prey model (9) to a limit cycle with a low-current, gas-filled startup. The parameters are
derived from those of Fig. 2, assuming that the length of the ionization region represents approximately half of the discharge column length:
L = `/2 = 2cm, Q0 = 5×1021 m−2s−1, Ī = 4A, γ = 3.5×103 s−1A−1, β ≈

∫ `
0 Ψ/N̄dx = 3.5×10−14 m3s−1, τ = 2.2×10−5 s.

C. Properties

Let us now verify that the main properties of the derived predator-prey model are consistent with those of the one-
dimensional model.
Just as in the case of the one-dimensional mode, theoretical calculations can be greatly simplified by making use of the
fact that the ratio ε ≡ n̄/N̄ is a small parameter. The non-dimensionalization procedure used in the one-dimensional
model6 to obtain an explicit formulation in terms of ε can be avoided by noting that β varies in proportion to 1/ε in
the case where Ī, Qo, γ and τ are fixed. Accordingly, an asymptotic analysis for large β can be performed from which
one obtains the frequency and damping rate for linear modes,

Re(ω) ≈
√

β
Q0

L
exp(−γ Īτ), (10)

Im(ω) ≈ γ Ī
2

cos [τ Re(ω)] . (11)

The frequency formula (10) is the same as that of linear Lotka-Volterra modes,1 save for the pre-ionization correction
factor

√
exp(−γ Īτ) which is typically close to 1. The damping rate shows that the model is linearly stable for small

τ , but becomes unstable when τ crosses the value τc = π/ [2Re(ω)], as visible on Fig. 6.
Another common point with the one-dimensional model is the fact that the linear frequency scaling in

√
β (or equiva-

lently, in 1/
√

ε) does not reflect the scaling of non-linear modes. As can be seen on Fig. 6, the frequency of non-linear
modes rapidly converge as β increases, which is consistent with the fact that there exists an asymptotic frequency at
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Figure 6. Bifurcation diagrams for the modified predator-prey model (9). Parameters τ and β are varied around the nominal point
investigated in Fig. 5.
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small ε in the one-dimensional model.6 An analytical expression of this asymptotic frequency remains to be found
in the case of the predator-prey model, but Fig. 6 strongly suggests that, just like for the one-dimensional model, the
frequency of non-linear modes is of the order of magnitude of the steady state gas ionization frequency, νi ≡ γ Ī.

IV. Conclusion

The basic features of ionization oscillations exhibited by the one-dimensional model5, 6 are reasonably captured by a
modified Lotka-Volterra model where the source term for neutrals accounts for the constant flow rate at the gas feed
and its subsequent depletion in a pre-ionization region.
The predator-prey model converges to a limit cycle independent of initial conditions and the limit cycle frequency re-
mains largely independent of the electron multiplication rate, both properties being consistent with the one-dimensional
mode. The stability threshold of the predator-prey model is determined by the time-delay incurred by the transit of
neutrals through the pre-ionization region, which also appears to coincide with the stability criterion of the one-
dimensional model.

A. Formal derivation of the predator-prey model

A simple predator-prey type model can be formally derived from the one-dimensional model (4) under the following
assumptions:

1. γ is constant in the whole ionization region and zero elsewhere,

2. Ψ/N̄ is constant in the avalanche zone and zero elsewhere,

3. the variations of N around the steady state N̄ are small and justify the approximation ln(N/N̄)≈ N/N̄−1; this
hypothesis is anyway implicit in the linearization that leads from Eq. (2) to Eq. (4a),

4. the flux of non-ionized neutrals leaving the avalanche zone is negligible.

Using assumption 1, Eq. (4b) can be integrated along characteristic lines to obtain the value of the flux of neutrals at
the exit of the pre-ionization region (i.e. at the entrance of the avalanche region),

Q(t) = Q0 exp
[
−γ

∫ t

t−τ

I (t∗)dt∗
]
, (12)

where τ is the transit time of neutrals in the pre-ionization region (from the beginning of the ionization region to the
beginning of the avalanche region). Using in turn assumptions 2, one can derive from Eqs (4b, 4a) the relation,

dI
dt

= β I (〈N〉−〈N̄〉) , (13)

where 〈N〉 represents the average density in the avalanche region and where β ≡
∫

Ψ/N̄dx. Finally, under assump-
tions 1 and 4, Eq. (4b) can be averaged over the extent of the avalanche region to obtain,

d 〈N〉
dt

=−γI 〈N〉+ Q
L

, (14)

where the flux density Q of neutrals entering the avalanche region is given by Eq. 12.
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