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Abstract: A solar electric propulsion low-thrust trajectory database is examined to 
formulate analytic models for use in rapid electric propulsion sizing tools. Analytic models 
are created based on characteristics integrated over the entire trajectory. Characteristic 
acceleration is defined for each trajectory, which in essence allows for a constant thrust 
assumption. Models are developed for near-Earth asteroid sample return mission, comet 
rendezvous, comet sample return, and Saturn fly by. Models follow a 1/x2 relationship 
between characteristic acceleration and optimum burn time. Given that theses are solar 
electric missions the relationship provides physical insight.  The models are then used in a 
rapid sizing tool which uses a genetic algorithm to find the maximum spacecraft payload. 
Optimized results are compared between missions and technology parameter sensitivity is 
explored. A comparison of variation of technology parameters within optimized results 
indicates which are more sensitive and therefore are system sizing drivers. The study showed 
that minimizing specific power has the largest affect on mass, followed by thruster efficiency, 
and thruster lifetime. Sensitivity trends were similar across each mission, regardless of 
destination. However, thruster lifetime was more sensitive in longer missions where more 
thrusters would be required.  

Nomenclature 
a  = mean acceleration [km/s/yr] 

Chara  = characteristic mean acceleration [km/s/yr] 
α = alpha [kg/kW] 
C3 = characteristic energy= 2

∞v  
Comet-R = comet rendezvous 
CSR = comet sample return 
EPS = electric propulsion system 
FB = fly by 
GA = genetic algorithm 
Isp = specific impulse 
LTTO = low thrust trajectory optimization 
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Mo = initial spacecraft mass [kg] 
NEA-SR = near Earth asteroid sample return 
NEP = nuclear electric propulsion 
SEP =    solar electric propulsion 
tb* = optimum burn time [yrs] 
Tf = flight time [yrs] 
ΔV = delta velocity [km/s2] 

pη  = propulsive efficiency 

vη  = mission planning efficiency 
 

I. Introduction 
lectric propulsion (EP) spacecraft mission design and optimization is complex and computationally intensive 
because it requires concurrent design of the trajectory, power, and thruster systems. Specifically, trajectory 

design for EP devices requires multivariate optimization, because unlike chemical thrusters, EP systems (EPS) have 
thrust-to-weight ratios less than one. Therefore, the physics dominating trajectory design is different and more 
intricate. Programs that perform low-thrust trajectory optimization (LTTO) are employed to find optima via direct 
and indirect optimization search methods1. Because of the expertise required to initialize and run LTTO programs it 
is not always effective to utilize existing LTTO programs for rapid multi-disciplinary EPS optimization. Instead less 
complex LTTO methods are favored in a rapid mission design environment. Since most deep space trajectories 
involve complicated maneuvers and variable thrust profiles such as sample returns, multi-destination missions, or 
gravity assisted missions2,3,4, simple analytic solutions such as the multi-revolution “spiral” trajectory5 yields sub-
optimal solutions. Recent research trends have created analytic models derived from a family or database of 
previously created optimized trajectories. Most notably for EP systems, analytic models have been created for 
Nuclear EP (NEP) missions to Mars, Jupiter, and Neptune6,7 Building from that historic precedence, a Solar EP 
(SEP) mission database is examined in an attempt to develop simple analytic models for use in rapid EP sizing and 
optimization tools. Additionally, the intention of an analytic model is to explain trending within a database while 
being rooted in the governing physics of low thrust trajectories.  
 

Previous deep space analytic models were limited to NEP systems, which assume constant thrust, constant 
power, circular, coplanar, optimum specific impulse trajectories.  The SEP dataset is different because thrusting is 
not constant, and trajectories are not circular and coplanar. Nevertheless, by defining mission characteristic 
variables, analytic models can be created and applied to SEP family trajectories. 
 

The paper outlines an approach to create analytic SEP trajectory models. Models are described for four different 
trajectories and are compared to existing analytic models.  The models are then combined with a rapid EP sizing and 
optimization tool to study technology parameter sensitivity.  

II. Low-Thrust Trajectory Analytic Modeling 

A. Introduction to Datasets  
Low-thrust trajectory optimization software, such as MALTO8, allow for the creation of trajectory databases. 

Trends can be found within these databases which form the basis of analytic models. Low-thrust trajectories are 
functions of launch date, flight time, launch vehicle, engine specific impulse, available power, throttle curve, 
number of engines and duty cycle. The database includes four different trajectories; each analyzed using four 
different thrusters. The database has more than 5,000 individual trajectories and was initially created to study the 
sensitivity affects on varying duty cycle9. However, for the purposes of creating analytic models a duty cycle of 80% 
is selected for all cases.  
 

The database includes four different SEP mission scenarios: 1) Near-Earth asteroid sample return mission to 
asteroid 1989 ML. This is a moderate ΔV mission that has an approximate duration of 3 years with a minimum 90 
day science period. The trajectory database was created using a neutral spacecraft mass of 1600kg. 2) Comet 
rendezvous mission to Tempel 1. This is a moderate ΔV mission with a small 800kg payload spacecraft. 
Rendezvous occurs within 1 year after perihelion. 3) Comet sample return to comet Tuttle-Giacobini-Kresak. The 
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spacecraft neutral mass is 1600kg and the ΔV requirement is large. The mission duration is approximately 8 years 
with a 180 day science window at the comet. An additional constraint, arrival V∞ (9km/s maximum), is 
incorporated to allow for Earth entry. This dataset of trajectories approaches the limits of current SEP technology 
capabilities. 4) Saturn fly-by mission with a 4500kg neutral mass spacecraft requiring a large ΔV. The arrival V∞ is 
again constrained to 9km/s at Saturn. The trajectory dataset for this mission uses a gravity assist (order Earth-Earth-
Venus-Venus-Earth-Saturn). In addition, most of the thrusting occurs near Earth’s orbit (.7-2AU). Table 1 
summarizes the mission scenarios examined in the database.  

 
Table 1. SEP Trajectory Database Highlights 

Mission Scenario 

Neutral 
Mass 
[kg] 

TOF 
[yrs] 

Typical 
ΔV 
[km/s] 

Thrust 
Distance 
[AU] 

Spacecraft 
Distance 
[AU] 

Near-Earth Asteriod Sample 
Return- 1989 ML 1600 ~ 3 3 1 - 1.6 1 - 1.6  
Comet Rendezvous- Tempel 1 800 2.5 - 6  8 1 - 3  1 - 4  
Comet Sample Return- TGK 1600 ~ 8 12 - 16 1 - 4  1 - 5  
Saturn Fly-By 4500 7.5 - 11 2 - 5 0.7 - 2  0.7 - 10  

 

B. Analytic Modeling Method 
Optimized SEP trajectories include a variable thrust profile, and variable specific impulse. However, net 
characteristics, such as the total kinetic energy output of the EP system, can be directly compared between a NEP 
and SEP system within the context of total trajectory requirements. Equation (1) shows that mean acceleration is the 
integral of the acceleration profile over the burn period.  

( )∫
Δ

=
−

≡
*
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bb t
vdtta

t
a    (1) 

 
To best describe a trajectory a characteristic 
acceleration is defined, which is based on the 
mean acceleration of the spacecraft. 
Optimized results from the trajectory 
database include ΔV and optimum burn time. 
To find the characteristic acceleration it is 
necessary to decouple Earth departure C3. 
Increasing C3 decreases the amount of ΔV 
required by the EP system. Thus to normalize 
the results in the database equation (2) is 
used to find the optimum mean or 
characteristic acceleration at C3=0. The 
mission planning efficiency (1/ vη ) is a 
measure of how efficiently Earth departure 
C3 reduces the spacecraft ΔV requirement. 

vη  is calculated numerically and differs 
based on the trajectory10. To simplify, a mean 
value of 0.8 is used for all the cases. Using 
equation (2), characteristic acceleration is 
calculated. 

*
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Figure 1. Characteristic Acceleration vs Optimum Burn Time 
for SEP Trajectories. Figure includes NEA-SR, Comet-R, Saturn 
FB, & CSR trajectories. Plotted lines are curve fits to optimized 
data series. Values are only evaluated where optimized trajectory 
data exists.  
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Next, the optimized characteristic accelerations are fit using an expression defined by equation (3). SEP solutions 
trend along burn time raised to the -2 power; which is similar to free-space radiation. This suggests a physical 
significance between burn time and characteristic acceleration. Figure 1 plots characteristic acceleration as a 
function of burn time for the available database value range. 
 

B
t

Aa
b

Char += 2*
    (3) 

 
The various analytic models are similar to 
previously developed NEP models5 For 
comparison, Figure 2 adds the analytic model 
for Earth-Jupiter transfer using NEP. In 
addition, the figure uses data points to 
represent the database of optimized 
trajectories and the solid lines are 
extrapolations to show trending. Figure 2 
shows that for very long and very short flight 
times optimized solutions begin to converge. 
Several observations are made when 
comparing the Jupiter trajectory family to the 
various SEP cases. As expected, it is 
observed that SEP missions stay within a 
feasible acceleration for shorter flight times, 
and the Jupiter NEP mission is more feasible 
at longer flight times. For both cases the most 
demanding spacecraft requirements are at 
short flight times.  
 
In addition to modeling characteristic acceleration, burn time is tied to flight time via a linear fit (equation 4). 
 

BtAt fb +⋅=*      (4) 
 
Fit parameters for each mission are presented in Table 2. In general, the fit parameters are similar and exhibit a 
scaling factor that is a function of the mission requirements. Examining the accuracy of the fit via the R-square term, 
the optimized trajectories trend the 1/x2 relationship and linear burn time relationship well. The NEA-SR mission is 
an outlier for the fit even though parameters A and B seem to trend the other missions well. This can be explained 
because there are two distinctly different optimum trajectory families within the dataset. The curve fit was assessed 
for the entire dataset. Although the data exhibits the same 1/x2 trend it has more scatter then the other cases, thus the 
reduced R-square value. Also, it is important to note that the Saturn mission does not have a burn time to flight time 
relationship because the flight time was fixed at 8 years for all cases. Therefore, only one relationship is derived and 
flight time is fixed for all further analysis.   
 

Table 2. Fit Parameters for SEP Analytic Models 

 
Characteristic Acceleration Model 

Eq. (3) 
Burn Time Model 

Eq. (4) 
 A (x10^6) B R-Square A B R-Square 
NEA-SR 4.345 -1.906 0.65 -22.6 69.24 0.77 
Comet-R 5.411 0.8942 0.89 0.9037 0.2097 0.99 
CSR 3.533 3.554 0.92 -10.35 87.77 0.97 
Saturn FB 1.977 1.367 0.94 - - - 
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Figure 2. Extrapolated Characteristic Acceleration vs 
Optimum Burn Time. Dotted values show where optimized data 
exists in the database, solid lines are extrapolations. Jupiter NEP 
model added. 
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C. Analytic Model Derivation Example: Comet Sample Return  
Figure 3 shows a CSR optimized trajectory 
example output plot from MALTO. The 
sample output provides a visualization of 
the trajectory including thrusting periods 
and magnitudes and arrival and departure 
times. The figure also displays details at 
key points and how spacecraft mass is 
changing over the trajectory.  
 
The analytic model representing this 
trajectory is detailed in Figures 4 and 5. 
Figure 4 shows optimized trajectory data 
points for the CSR mission along with the 
generated curve fit and the 95% prediction 
bounds on the curve fit parameters. Figure 
5 illustrates the linear relationship between 
optimum burn time and flight time. The 
appendix contains similar detailed plots for 
the other three missions studied. 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 3. Example MALTO output for Comet Sample Return 
Mission.  
 

Figure 4. CSR Analytic Model Derivation.  
Figure includes data points calculated from the database 
and the curve fit.  
 

Figure 5. CSR Analytic Burn Time Model. Figure includes 
data points calculated from the database and the curve fit.  
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Using the CSR analytic model defined in Figures 4 and 5 ΔV can be solved for as a function of C3 and flight time. 
An example is shown below for C3=10km/s2 and Tf= 8yrs. 
 
1) Calculate burn time 

yrstt fb 97.477.8735.10* =+⋅−=  
2) Calculate the reference mean using  

yrskm
t

ea
b

Char //63.4554.36533.3
2*

=+=  

3) Using equation X, find the mean characteristic acceleration which includes positive Earth departure C3 

yrskm
t

aa
b

Char //11.2
8.0

10
* =−=  

4) Next, calculate ΔV  
skmtav b /50.10* =⋅=Δ  

 
The analytic model can be exported for use in a rapid EP system sizing tool.  Within the sizing tool specific impulse 
can then be calculated one of two ways: 1) assuming optimum Isp trajectory and using the Stuhlinger equation to 
solve for Isp or 2) selecting a thruster and inputting Isp based on input power.  
 

III. Sensitivity Study 

A. Introduction 
The four analytic SEP models in conjunction with the NEP Jupiter model span an expansive mission design space. 
The combination of analytic models provides an ideal condition for studying parameter sensitivities across very 
different missions. Employing a rapid EP system optimizer11 there are six parameters that are varied: C3 [km/s2], 
alpha [kg/kW], spacecraft power [kW], flight time [days], thruster efficiency [%], & thruster lifetime [days]. C3, 
flight time, and thruster input power are mission design functions which are chiefly dependent on the trajectory and 
EPS performance. Alpha, thruster efficiency, and thruster lifetime are technology parameters which are independent 
of trajectory. Isp is calculated at optimum. The goal is to understand which parameters, across the various missions, 
are most sensitive to maximizing payload mass. A more standard statistical sensitivity study or Taguchi robust 
design method is not used because solutions need to be system optimal.  
 
To adequately explore this space an optimization 
program was written to study sensitivity. The 
optimization program employed is a genetic 
algorithm (GA). GAs are useful when objective 
functions are discontinuous, non-differentiable, 
stochastic, or highly nonlinear1. In this case, the 
objective function is the EP system sizing tool. The 
GA begins by creating an initial random population. 
An individual consists of a fitness value and genes. 
Genes (or independent variables) are first assigned 
at random and evaluated by the objective function to 
find the fitness of the individual. Once an initial 
population is created the optimization program 
follows rules similar to natural selection. Within 
each generation parents are selected via various 
methods. The “tournament” method was used in this 
algorithm and it picks four individuals at random 
and chooses the most fit individual to be a parent for 
the next generation. Genes are swapped between 
parents to form children. In addition, mutation rules 

 
Figure 6. Maximum Payload Mass Observed in Each 
Generation. Sample run for the CSR mission. 
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are applied to introduce random variation into the population. Over multiple generations or iterations the population 
“evolves” and reaches an optimal fitness or solution. To illustrate how an optima is found, Figure 6 plots the most fit 
individual verses iterative generations.   
 
In addition to finding the optimal solution, the GA can identify parameter sensitivity. As a result of its random 
nature, each time the code is run, an optima is found that is slightly different from the preceding or subsequent run. 
By comparing the genes of optimal individuals a sensitivity analysis can be performed by examining variations 
within optimal genes. Genes that exhibit more fluctuations between optimal solutions are considered less sensitive, 
while genes that always reach the same solution across multiple runs are considered more sensitive or necessary to 
achieve an optimal state.  

B. CSR Sensitivity Study 
Prior to creating the initial population, each independent variable is constrained. Only individuals within these 
bounds can be created. Bounds are employed to prevent variables from exploding or reaching zero. For instance, in 
most optimization cases the optimum alpha was always at the lower bound. Additionally, boundaries prevent 
excessive extrapolation within the analytic trajectory model. Table 3 details the constraints for the CSR mission.  
 

Table 3. CSR Mission Parameter Constraints 

 
Upper 
Bound 

Lower 
Bound 

C3 (km/s^2) 50 0 
Alpha (kg/kW) 200 50 
Thruster Power (kW) 30 5 
Flight Time (days) 3000 2500 
Efficiency (%) 90 60 
Thruster Lifetime (days) 3000 300 

 
In consequence of the random nature of the algorithm five runs are performed for each case extending out 800 
generations. The results show which genes become dominant; these are the more sensitive parameters. Table 4 
shows results from the algorithm (Mo=2000kg).  In addition, the mean optimal result is calculated along with the 
standard deviation. Examining the technology parameters, it is easily seen that alpha is pushed to the lower bound 
for all runs, efficiency is pushed to the upper bound for all runs, and thruster lifetime is selected based on burn time 
in order to minimize the required amount of thrusters. Thus, it varies from 2100 to 2500 days (5.75 – 6.85 yrs).  
 

Table 4. GA Optimization Results- Comet Sample Return, Mo=2000kg 
    
Run 1 2 3 4 5 Mean Std Dev 
M/Mo 0.40 0.40 0.42 0.40 0.41 0.41 0.01
Payload Mass (kg) 790.84 800.24 842.33 800.76 826.91 812.22 21.53
C3 (km/s2) 2.41 4.10 1.89 2.86 3.02 2.85 0.82
Alpha (kg/kW) 51.78 51.53 50.88 52.52 51.50 51.64 0.59
Power (kW) 9.07 8.58 8.07 8.58 8.99 8.66 0.40
Flight Time (days) 2920.04 2918.29 2912.74 2976.80 2908.19 2927.21 28.11
Efficiency (%) 0.89 0.83 0.90 0.89 0.90 0.88 0.03
Thruster Lifetime (days) 2419.17 2100.81 2199.64 2823.40 2926.28 2493.86 368.18

 
To better compare variables, each is non-dimensionalized and normalized such that the mean is 1. Then, the lowest 
and highest normalized values are plotted. The outcome is a plot that compares the variation of each variable about 
the common normalized mean. Examining Figure 7 the dominant technology parameter genes can be easily 
identified: 1) Alpha- lower values equate to more payload mass, thus the system will always optimize to the lowest 
possible value, 2) Efficiency- a 7% variation was noted in the optimum values, therefore, it ranks second to alpha, 
and 3) Thruster lifetime- varies by as much as 17% from the mean, making it the least dominant gene. Briefly 
examining the three mission design parameters along with the payload mass it is observed that the optimal solutions 
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did vary, albeit to a limited extent. C3 on the other hand varied more extensively about the mean. However, 
examining the values, the variations were only between 2 to 4 km/s2. Thruster input power and flight time did reach 
optimal solutions. However, power varied more than flight time.  
 
It should be noted that cost is not 
included in the model, only mass is 
evaluated at the objective function. 
For instance, adding thrusters to a 
spacecraft, because of inadequate 
demonstrated lifetime, would have a 
significant associated cost; the affect 
would be greater than a ~40kg mass 
decrease that is limited to the model 
herein. While cost is more 
straightforward to implement in the 
case of adding a thruster to a 
spacecraft, it is not so straightforward 
to evaluate development cost. Data 
does not exist that can quantify how 
much money it costs to increase an EP 
thruster efficiency by 1%, or the cost 
of increasing a thruster lifetime by 1 
day. Thus, in an effort to avoid these 
different issues cost is omitted.   

C. General Sensitivity Study 
The process outlined for the CSR mission was repeated for the remaining missions: NEA-SR, Comet Rendezvous, 
Saturn Fly-By, and Jupiter NEP transfer. Figure 8 plots the normalized maximum and minimum variables for each 
mission scenario. The lines are joined together to note trending across missions. C3 is not joined by lines because as 
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Figure 7. CSR Mission Design Parameter Sensitivity Study 
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Figure 8. Mission Design Parameter Sensitivity Study.  
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seen in the CSR case, the actual variations are typically small even though it varies significantly about the mean.   
The results indicate while technology parameter sensitivity magnitude may vary across missions, in general, ranking 
and trending stays the same. For all system optimization cases alpha was always pushed to the lower constrained 
bound. Alpha is an important sizing parameter because changes are immediately reflected in spacecraft mass. Next, 
efficiency exhibits minimal variation, increasing efficiency proportionally decreases propellant mass.  Third, thruster 
lifetime varies most significantly; however, the variation decreases with increasing ΔV. This shows that lifetime 
does not play a role until longer burn times are required.   
 
Comparing flight time shows that there is an optimal flight time for each mission, with the only outlier being the 
Saturn Fly-By mission. However, this is expected because the fly-by mission has a fixed flight time. Last, 
comparing thruster input power shows uniform scatter over all missions. This shows that optimum input power can 
vary ~10-15% without a penalty in payload mass.  

IV. Conclusion 
Four SEP analytic optimum low-thrust trajectory models have been created from existing databases that vary 

flight time, power, and duty cycle. The models were developed such that they could be fed into rapid EP system 
sizing tools. Trends have been found within mission characteristics integrated over the entire trajectory family. 
Specifically, expressions were derived that present characteristic acceleration as a function of burn time, and burn 
time as a function of flight time. The first relationship trends a 1/x2 curve fit, while the second expression is linear. 
Curve fit parameters seem to follow a scaling law based on increasing ΔV.  

Using the set of models, EP system sizing and optimization was performed using a sizing model with a genetic 
algorithm.  The GA facilitated a study to determine technology parameter sensitivity at optimum across various 
missions. Sensitivity to alpha, thruster efficiency, and lifetime was examined and showed that for all the mission 
scenarios alpha is the most sensitive, followed by efficiency, and then by thruster lifetime.  

Rapid comparison between missions helps gain insight into design and technology drivers. For the missions 
studied, thruster efficiency and lifetime was allowed to vary more significantly for lower ΔV missions. As a SEP 
system is pushed to physically limiting trajectories, EP performance parameters become increasingly important. 
With respect to power systems, the most direct decreases in mass are observed when alpha is decreased. While 
lower power density cells will always reduce overall mass, improvements are not trivial, especially with a deep 
space solar powered spacecraft.  

Given the simplicity of the analytic models a more detailed continued examination of technology and mission 
parameters should be considered. In addition, analytic model fit parameters can be incrementally increased or 
decreased to fill a larger theoretical mission design space. This would help identify limits in current EP devices as 
well as mission enhancing and enabling technologies.  
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Appendix 

 Analytic models for NEA-SR, Comet Rendezvous, and Saturn Fly-By are detailed in the appendix.  
 
 

 
 

 
 
 

 
Figure A-2. NEA-SR Analytic Burn Time Model. Figure 
includes data points calculated from the database and the 
curve fit.  

 
Figure A-4. Comet Rendezvous Analytic Burn Time Model. 
Figure includes data points calculated from the database and the 
curve fit.  
 

 
Figure A-3. Comet Rendezvous Analytic Model Derivation.  
Figure includes data points calculated from the database and  
the curve fit. 
 

 
Figure A-1. NEA-SR Analytic Model Derivation.  
Figure includes data points calculated from the database and  
the curve fit. 
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Details from GA optimization of the other four analytic trajectory models:  
 

Table A-1. GA Optimization Results- NEA-SR, Mo=2000kg 
     
Run 1 2 3 4 5 Mean Std Dev 
M/Mo 0.86 0.86 0.87 0.86 0.87 0.86 0.01 
Payload Mass (kg) 1722.62 1717.39 1731.62 1715.44 1741.12 1725.64 10.68 
C3 (km/s) 0.34 0.06 0.21 0.63 0.13 0.27 0.22 
Alpha (kg/kW) 54.11 51.82 54.37 54.41 53.61 53.66 1.08 
Thruster Power (kW) 3.20 3.54 3.00 3.06 3.02 3.16 0.22 
Flight Time (days) 1066.10 1067.72 1061.78 1069.40 1063.76 1065.75 3.04 
Efficiency (%) 0.77 0.88 0.67 0.85 0.64 0.76 0.11 
Thruster Lifetime (days) 1543.20 2954.10 1551.04 2052.75 2208.28 2061.87 580.42 
 
 

Table A-2. GA Optimization Results- Comet Rendezvous, Mo=2000kg 
    
Run 1 2 3 4 5 Mean Std Dev 
M/Mo 0.50 0.50 0.50 0.49 0.50 0.50 0.00
Payload Mass (kg) 996.23 999.51 994.96 987.09 996.88 994.93 4.69
C3 (km/s) 3.61 1.08 5.28 4.58 1.91 3.29 1.77
Alpha (kg/kW) 50.07 50.01 50.13 50.56 50.07 50.17 0.22
Thruster Power (kW) 7.54 7.53 5.68 5.61 7.54 6.78 1.03
Flight Time (days) 1194.60 1191.88 1199.28 1194.76 1197.24 1195.55 2.82
Efficiency (%) 0.88 0.90 0.89 0.88 0.87 0.89 0.01
Thruster Lifetime (days) 1952.30 1438.97 1310.44 2670.03 2466.70 1967.69 602.92
 

 
Figure A-5. Saturn Fly-By Analytic Model Derivation.  
Figure includes data points calculated from the database and  
the curve fit. 
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Table A-3. GA Optimization Results- Saturn Fly-By, Mo=5000kg 
    
Run 1 2 3 4 5 Mean Std Dev 
M/Mo 0.73 0.74 0.73 0.73 0.74 0.73 0.00
Payload Mass (kg) 3640.57 3682.07 3658.85 3660.03 3676.54 3663.61 16.39
C3 (km/s) 2.29 1.45 1.47 0.78 2.09 1.61 0.60
Alpha (kg/kW) 50.12 52.80 52.40 50.72 51.42 51.49 1.12
Thruster Power (kW) 10.94 9.69 8.26 10.16 9.40 9.69 0.99
Flight Time (days) 1733.81 1882.99 1662.29 1986.92 1812.66 1815.73 126.58
Efficiency (%) 0.88 0.89 0.88 0.89 0.87 0.88 0.01
Thruster Lifetime (days) 2210.44 2001.17 2624.93 2569.31 2679.21 2417.01 296.13

 
Table A-4. GA Optimization Results- Jupiter NEP, Mo=5000kg 

     
Run 1 2 3 4 5 Mean Std Dev 
M/Mo 0.73 0.73 0.73 0.73 0.74 0.73 0.00
Payload Mass (kg) 3655.96 3669.26 3659.24 3643.36 3678.00 3661.17 13.20
C3 (km/s) 0.370037 1.05 0.22 1.46 0.62 0.75 0.51
Alpha (kg/kW) 50.47505 50.57 50.48 50.74 51.18 50.69 0.29
Thruster Power (kW) 8.559856 6.97 9.17 6.94 7.74 7.87 0.98
Flight Time (yrs) 19.75858 19.79 19.30 19.55 19.42 19.57 0.21
Efficiency (%) 0.866727 0.89 0.82 0.88 0.89 0.87 0.03
Thruster Lifetime (days) 2102.7 2981.64 2718.36 2852.57 2441.04 2619.26 351.48
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