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Abstract: Many researchers look to magnetoplasmadynamic (MPD) thrusters to power 
future manned space missions. This class of thrusters has a low thrust efficiency, therefore, 
which has hindered its practical realization. One of the strategies for improving 
performance is to refine the shape of its discharge chamber. The authors propose a method 
for optimizing the shape of the discharge chamber of a self-field MPD thruster, using a 2-
dimensional axially symmetric model of plasma flow. This method was used to optimize the 
chamber, in which the anode was limited to flared shapes, and was shown to be valid.  

Nomenclature 
z = axial coordinate 
r = radial coordinate 
 = mass density 
u = velocity 
p = pressure 
  = viscous stress tensor 
j = current density 
B = magnetic flux density 
 = energy density 
E = electric field 
 = thermal conductivity 
T = temperature 
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I = unit tensor 
0 = magnetic permeability 
 = electrical conductivity 
 = specific heat ratio 
 = ionization degree 
m  = mass flow rate 
J = discharge current 
V = discharge voltage 
 = thrust efficiency 
F = thrust 
S = area element vector 
l = line element vector 
La = overall length of discharge chamber 
Lst = anode straight section length 
Lc = cathode length 
rin = inlet anode radius 
rout = outlet anode radius 
rc = cathode radius 
Lt = cathode tip cone length 

 = diverging angle 
P = design variable vector 

I. Introduction 
HE MPD thruster features one of the highest thrust densities of all electric thrusters and will be easy to scale up 
in size and power output. Many look to the MPD thruster to serve as the main engine for future missions to 

Mars. One of the issues in realizing such engines, however, is the low thrust efficiency of this thruster. One 
approach to improving efficiency is to vary the cross sectional shape of the discharge chamber.  Researchers in 
institutes all over the world have experimented with a wide variety of shapes, but have yet to identify clear-cut 
principles for designing the discharge chamber. On the other hand, Toki1 showed in numerical simulations using 
mathematical programming that a converging-diverging chamber reaches a high thrust efficiency for a quasi-1-
dimensional flow field and a constant input power. 

We are studying the optimization of the discharge chamber cross-sectional shape in a self-field MPD thruster, 
using a 2-dimensional axially symmetric plasma model. Our goal is to identify clear design guidelines. Such 
optimization has not been feasible in the past, due to the high calculation cost involved in computational fluid 
dynamics (CFD). However, in this paper we propose a unique approach to optimization, combining with the 
response surface method with a Kriging model2 to reduce the calculation load with a differential evolution algorithm 
to carry out the optimization efficiently. 

A condensed version of Kubota’s analytical code3 was used to solve example problems involving a flared nozzle, 
which is commonly used in experiments on discharge chamber shapes. This optimization method was shown to be 
effective when carried out under the assumptions given below. 

II. Modeling 

A. Assumptions of Flowfield 
The following assumptions were made in this CFD analysis of 2-dimensional axially symmetric plasma flow in 

the MPD thruster.  
· The flow field is a single fluid model in 2-dimensional axially symmetric. 
· The propellant was assumed as a fully ionized plasma of Ar+. 
· Thermal conductance and fluid viscosity were accounted for. 
· Sheath hall voltage was a constant 20 V. 
· Multi-step ionization and the Hall effect were neglected. 
· The nozzle walls were perfect insulators. 
· Heat equilibrium was preserved locally. 

T 
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· Single temperature model was assumed.  

B. Governing Equations 
The followings are the governing equations defining the flow inside the MPD thruster, if all of the above 

assumptions hold true.  
Mass conservation law 

  0
t

 
  


u      (1) 

Momentum equation 

  p
t

  
     


u

uu I j B          (2) 

Energy conservation law 

      p T
t

   
           

u j E u          (3) 

Equation of state 
 (1 )p RT            (4) 

Ohm’s law 
    j E u B          (5) 

Maxwell’s equation 
 0 B j          (6) 

Induction equation of magnetic field 

 
0

1

t 
 

       

B
u B B       (7) 

Here, the internal energy ε and viscosity tensor   are obtained as follows: 
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u          (8) 
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ij ij
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x x x
  

   
          

         (9) 

The values for the thermal conductivity coefficient λ, electrical conductivity σ and viscosity coefficient μ were 
found in the Reference3. The degree of ionization was constant at α = 1 due to the assumption of a fully ionized 
plasma. 

C. Numerical Method 
The TVD Lax-Friedrich scheme was employed to solve governing equations (1)-(3). The characteristic magnetic 

field diffusion time was far shorter than the time needed for changes in the flow, so magnetic field diffusion was 
considered steady. The Induction equation of magnetic field (7) was solved at each time step using successive over-
relaxation (SOR).  

D. Calculation Conditions 
The calculation conditions were set as follows taking into consideration the actual operating conditions:  
 

Table 1. Calculation Conditions 
Propellant Argon 

Mass flow rate m [g/s] 0.8 
Discharge current J [kA] 8.0 
Inlet temperature Tin [K] 10000 

Sheath hall voltage [V] 20 
Mesh size 120 x 40 

Thus, in this study, the key operating parameter of MPD thruster performance assessment was set as J2/ m =8.0 x 
1010A2s/kg. The settings of the boundary condition etc. other than Table 1 refer to Reference3. 
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III. Formulation of Optimization Problem 

E. Evaluated Value 
The purpose of this study was to improve thrust efficiency, so the evaluated value to be assessed and maximized 

was defined as follows: 
2 2

2 2

F F

mP mJV
  

 
             (10) 

The thrust F was calculated by integrating the momentum flux across the outlet: 

 
outlet

F p d   uu I S             (11) 

The discharge voltage V was calculated by line-integrating the electric field for the voltage drop between the 
anode and the cathode. This was added to the constant sheath hall voltage of 20 V to find the final value. 

cathode cathode

anode anode
20 20V d d


         
  

j
E u Bl l         (12) 

This analysis did not account for the Hall effect or other phenomena, so it underestimates the true discharge 
voltage and overestimates the true thrust efficiency. 

F. Design Variables 
The design variables are the shape parameters of the discharge chamber, which, in this optimization process, 

were limited to flared shapes. The followings describe the acceptable ranges for each shape parameter. 
 

Table 2. Discharge chamber shape parameters 
Chamber overall length La [cm] 2.0 ≤ La ≤ 6.0 

Length of straight section Lst [cm] 0.4 ≤ Lst ≤ 4.0 
Cathode length Lc [cm] 1.0 ≤ Lc ≤ 4.8 

Inlet anode radius rin [cm] 0.7 ≤ rin ≤ 2.0 
Outlet anode radius rout [cm] 1.0 ≤ rout ≤ 3.5

 
The cathode radius rc was set at 0.4 cm and the length of the conical section at the tip of the cathode was set at Lt 

= 0.7 cm. Thus, there were 5 design variables in this study: La, Lst, Lc, rin and rout. 
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Figure 1. Discharge chamber shape
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G. Constraints for Design Variables 
The following constraints were applied to the design variables. 
 

Table 3. Constraints 
Cathode length/Discharge chamber overall length Lc/La ≤ 4/5 

Straight section length/Discharge chamber overall length Lst/La ≤ 2/3 
Diverging angle  [deg] 5 ≤ ≤ 30 

 
where the diverging angle is defined by 

1tan a st

out in

L L

r r
   
   

     (13) 

IV. Kriging Model 
We used the response surface method with the Kriging model to optimize the chamber shape. The response 

surface method expresses the relation between a design variable and a calculated evaluated value in an 
approximation equation, using some selected sampled points. Specifically, we employed an approximation equation 
to express the relation between discharge chamber shape and thrust efficiency. This approach allowed us to reduce 
the number of CFD calculations, greatly reducing the time needed to achieve the optimization. 

The Kriging model was originally developed as a procedure for geostatistics to describe and predict the spatial 
distribution of mineral resources. In recent years, this was applied as the model of the approximation equation in the 
response surface method4,5,6. One characteristic of the Kriging model is that it interpolates the sample points 
mutually and makes the approximation equation, using a concept of the indeterminacy. In other words, it is well 
suited for use in computer experiments, where measurement errors do not occur. 

In the Kriging model, the evaluated values y(P) of the design variables P = [La Lst Lc rin rout]
T are taken as the 

actual values of the stochastic variables from the stochastic field. They are defined as follows6: 
     y f Z P PP      (14) 

where f(P) is the global model and Z(P) is a stochastic process expressing the error with respect to f(P), which has a 
mean value of zero but has a non-zero covariance: 

    2,i jCOV Z Z k   P P R            (15) 

It is assumed that this stochastic process is generally stationary. 
R in Eq. (15) is an n x n correlation matrix and is found with the following expression; n is the number of sample 
points. 

   2
1

, exp
m

ij i j h i j h
h

R R 


 
    
  
P P P P          (16) 

Here, m is the number of design variables and h are parameters with values that are more than zero. 
f(P) in Eq. (14) is generally handled as a constant; if so, the best unbiased estimator for y(P) of the design 

variables P is 

   1ˆ ˆˆ Ty f f  P r R y 1            (17) 

where 

      1 2
T

ny y yy P P P            (18) 

1

1
ˆ

T

T
f






1 R y

1 R 1
             (19) 

     1 2, , ,
T

nR R R   r P P P P P P　 　　          (20) 

In the above, 1 represents an n-dimensional vector whose components are all equal to unity. 
Also, the value for h in Eq. (16) is defined as that which maximizes the following likelihood function L: 

 2 1
ˆlog log

2 2

n
L det   R           (21) 



 
The 31st International Electric Propulsion Conference, University of Michigan, USA 

September 20 – 24, 2009 
 

6

where 

              
   1

2
ˆ ˆ

ˆ

T
f f

n


 


y 1 R y 1
          (22) 

In the Kriging model, the mean squared error of the predicted value  ŷ P  can be predicted2: 

 21
2 2 1

1

1
ˆ 1

T

T
T

s 





  
   

 
 

1 R r
r R r

1 R 1
          (23) 

the minimum value of this is zero, when P matches exactly with the sample points. The further P is from the sample 
points, the greater the value of s2. 

V. Optimization Process 

H. Flow Chart 
Figure 2 depicts the flow chart of the optimization process in the response surface method. This section explains 

the details of the flow. 

 

I. Selection of Initial Sampling Points 
The basic purpose of the Kriging model is for interpolating between sample points to obtain a predicted value for 

any arbitrary point P. In order to establish the response surface, therefore, it is vital to place sample points in the 
solution space so as to gain as much information about the solution space as possible. An experimental design was 
used to satisfy that requirement. Experimental design was originally developed for making efficient examinations of 
the extent of influence of factors and their interactions; under the response surface method, they can be applied to 
find out appropriate arrangement of the samples. 

In this study, Latin Hypercube Sampling7, one of the experimental designs, was employed to identify sample 
points on 88 discharge chamber shapes. 

J. Global Optimization 
It has been stated above that the Kriging model provides an approximation equation for interpolating between 

sample points; in other words, this suggests that the possibility that the solution space obtained using this equation 
becomes multimodal. Therefore, global optimization of the approximation equation obtained is necessary, and the 
optimization procedure taken in this study employed a Differential Evolution (DE)8: 

The DE was solved as follows: 
[1] N design variables were generated at random and evaluated. 
[2] Target design variable Pt was selected at random. 
[3] Design variables Pa, Pb and Pc were selected at random. All of Pt, Pa, Pb and Pc were design variables. 
[4] Design variables Pa, Pb and Pc were mutated at the mutation ratio G (0.0 < G < 2.0) to create the vector V. 

Figure 2.  Flow chart of optimization process 

START

At-end condition?

END 

Yes 

No

Select initial sample points

Create approximation equation 

Global Optimization Addition of sample points 
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 Ga b c  V P P P             (24) 

[5] The new design variable Pnew was created using Pt and V according to the crossover ratio CR (0.0 < CR < 
1.0). 

[6] Either Pt or Pnew was left to the next generation by comparing their adaptability. 
[7] Steps [1] - [6] were repeated until the at-end condition was reached. 
This procedure was used in the present study to find the h parameter of the Kriging model. 

K. Addition of Sample points 
Generally, it is difficult to develop an accurate approximation equation with only initial sample points. Therefore, 

in this study, the new optimal values selected with the DE created from the approximation equation were added as 
new sample points. The approximation equation was then revised and the DE was used to search for new optimal 
values in a repeat of the previous step, providing steady improvements in accuracy of the approximation equation. 
Thus, this was a process of sequential approximate optimization. 

This study also employed the Expected Improvement (EI) function. The value provided by the approximation 
equation for the thrust efficiency under design variable vector P was represented by ŷ , the maximum value 

satisfying the constraints within the number of sample points was max, and the error in predictions that could be 
provided by Eq. (23) was represented by s . These were used to define the EI function: 

 EI max max
max

ˆ ˆy y
ŷ s

s s

 
 

             
       (25) 

where    was the cumulative density distribution of the normal distribution and     was the probability density 

function of the normal distribution. 
This EI is an index that expresses the potential for the thrust efficiency to be improved beyond the sample points 

obtained. EI is used as the evaluated value and can enable both efficient improvement of the approximation equation 
and global searches for optimum solution2. 

Ninety shapes were added as additional samples in this study. 

L. Estimation of Discharge Voltage 
It has been experimentally shown that the greater the input power provided to the MPD thruster, the better its 

thrust efficiency9. Thus, in order to observe the influence of the effectiveness of discharge chambers alone, it is 
preferable to conduct the optimization under the condition of constant input power. Constant current sources, which 
allow the current to be specified, have been used in experiments with MPD thrusters. Still, it is not possible to know 
the discharge voltage until the thruster has begun to fire. This is also true in CFD simulations, which only show the 
voltage after the calculations have converged. 

Therefore, besides thrust efficiency, this study employed the Kriging model to observe the discharge voltage. An 
approximation equation was developed to calculate this value V̂ , and this enabled us to conduct optimization while 
making rough estimates of the voltage. We were able to make approximate guesses of the voltage without carrying 
out CFD calculations, so avoiding unnecessary CFD simulations with chamber shapes that would not satisfy the 
necessary voltage conditions. The approximation equation for V̂  was also employed to develop constraints that 
contributed to optimizing the chamber shape for constant input power. The discharge voltage was set to V

*, we 
defined the constraints V̂   V* and V̂   V*, and continued the optimizing process within the respective limits of the 
constraints. The shape with the highest EI was selected as the final design. This process enabled us to find a shape of 
the discharge chamber optimized for the given input power P*(= J*V*, with the required discharge current J* and 
discharge voltage V*). 
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VI. Example of Optimization Calculation 
In this study, the optimization was performed to seek maximum thrust efficiencies at discharge voltages of 25-47 

V in 1 V increments. Figure 3 shows the calculated thrust efficiencies of 178 chamber shapes in this series. 

 
The red points in Fig. 3 show the maximum thrust efficiencies attained at 22 voltage levels. These represent the 

optimal chamber shapes for each voltage. 
Let us consider the variations in thrust efficiencies indicated by the red points. The thrust efficiency shows a 

large increase in region [1] (about 25-31 V). The variation in thrust efficiency is lower, nearly zero, in region [2] 
(about 31-35 V). Thrust efficiency then decreases in region [3] (about 35-47 V). 

Figure 4 shows an example of the shape of the discharge chamber in region [1], corresponding to point a. 
Similarly, Figs. 5, 6 and 7 show the discharge chamber shapes corresponding to point b on the borderline between 
regions [1] and [2], point c on the borderline between [2] and [3], and d, respectively.  
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Figure 3. Variation in thrust efficiency with discharge voltage (Ar, 0.8 g/s, 8 kA) 
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A. Variations in optimal discharge chamber shape with discharge voltage 
The trend shared by the chamber shapes in all three regions is that the maximum overall chamber length is close 

to 6 cm. The lengthening of the anode, which also serves as a nozzle, helps to efficiently transform the enthalpy of 
the plasma flow into kinetic energy. They also shared a tendency for the length of the straight portion to be near the 
minimum permitted value of 0.4 cm. 

Let us now discuss these findings, beginning with region [1], where a is defined. The cathode length in this 
region is nearly constant, near its maximum of 4.8 cm, and the inlet anode radius varies only slightly, generally 
within the range 0.7-1 cm. What varies most in this region is the outlet anode radius; it rises with increasing 
discharge voltage to a maximum of 3.5 cm at point b. 

In region [2], it is mainly the radius of the inlet anode that increases. It reaches 1.8 cm close to its maximum 
permitted value of 2.0 cm at point c. The cathode length remains generally constant in this region. 

In region [3], the cathode length gradually diminishes with increasing discharge voltage. The other parameters 
do not change, with the outlet and inlet anode radii remaining close to their maximum limits. 

Figure 4. Optimal chamber shape at point a 

Figure 6. Optimal chamber shape at point c 
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Figure 5. Optimal chamber shape at point b 

Figure 7. Optimal chamber shape at point d 
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To summarize the above variations in discharge chamber shape, up to point c (i.e., in regions [1] and [2]), the 
distance between the electrodes increases, with the cathode remaining long while the anode dimensions are vary. 
Thereafter, in region [3], the inter-electrode distance remains constant while the cathode length is reduced. 

B. Variations in thrust efficiency of optimal discharge chamber shape with respect to discharge voltage 
Let us consider the causes of the variations in thrust efficiency with discharge voltage seen in Fig. 3. The thrust 

obtained using Eq. (11) can be divided into two components, magnetic and aerodynamic. Figure 8 presents these 
two components as they vary in the 23 optimal discharge chamber shapes. 

 

 
As seen in the figure, the magnetic thrust is generally much higher than the aerodynamic thrust. Thus, the 

magnetic thrust is the dominant component for every chamber shape. At the same time, there are unambiguous 
differences between the two components in how they vary with discharge voltage. 

The magnetic thrust rises relatively quickly in regions [1] and [2]. It then becomes roughly constant in region [3]. 
This is because the change in the optimal shape of the discharge chamber in these regions is due to increasing inter-
electrode distance. Then, the distance is approximately constant at its maximum allowed value in region [3], causing 
the magnetic thrust to be approximately constant. 

In regions [1] and [3], the aerodynamic thrust has nearly constant values of 2.9 and 0.7 N, respectively. Only in 
region [2] does it change, falling from 2.9 to 0.7 N. The anode radii are fixed in regions [1] and [3] but increase in 
region [2]. This suggests that the thrust varied in response to the change in inlet anode radius. 

In other words, expanding the outlet anode in region [1] increases the inter-electrode distance, also increasing the 
dominant magnetic component of thrust. The reason to hold the inlet anode radius to a small size in this region is to 
maintain the aerodynamic thrust at as high a value as possible, obtaining a maximum total thrust. This would explain 
the increasing thrust efficiency in region [1]. 

The outlet anode radius size is the maximum possible in region [2]. Therefore, widening the inlet anode 
increases the inter-electrode distance and, in turn, the magnetic thrust. However, widening the inlet also decreases 
the aerodynamic thrust, so the growth in overall thrust is not very large. This explains why the thrust efficiency is 
approximately constant in this region. 

Both the outlet anode radius and inlet anode radius are close to their maximum permitted values in region [3], so 
it is no longer possible to vary the inter-electrode distance, and neither the magnetic thrust nor the aerodynamic 
thrust change very much. 

Also, the discharge voltage rises in region [3] even though the inter-electrode distance does not change. In this 
region, the discharge voltage is increased by shortening the cathode. The axial and radial components of the Lorentz 
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force are shown for each discharge chamber shape in Fig. 9, labeled Fz and Fr, respectively, on a cross section on the 
z-r plane. 

 
It can be seen from Fig. 9 that Fr rises with increasing voltage in region [3]. This indicates that shortening the 

cathode increases the Lorentz force in the radial direction. In other words, raising the radial Lorentz force increases 
the work for the plasma done by the Lorentz force, which in turn raises the discharge voltage. Thus, in this region, 
since the inter-electrode distance does not change, the thrust also remains constant. However, shortening the cathode 
increases the discharge voltage, and this acts to decrease the thrust efficiency. 

C. Problems Remaining in our Analysis Code 
It was confirmed that the code used in this study to analyze MPD thrusters is reliable for the discharge chamber 

shape with the flared anode and the short cathode by comparing code results with experimental results. There were 
some other problems, however, as follows. 

I. Under high input power levels (the region above 40 V in Fig. 3), the calculations for some shapes become 
unstable, and they diverge under some circumstances. Therefore, the results in this region are somewhat 
unreliable. 

II. The selected discharge current of 8 kA exceeded the critical current for some discharge chamber shapes. It 
is not appropriate to neglect the Hall effect and other parameters in that region. 

III. The discharge voltage was calculated on line integrals from the cathode to the anode. However, there was 
about a 10% variation in the value found by different integration paths. 

Thus, this code leaves some problems yet to be resolved before it is used for complete and total shape 
optimization. 

VII. Conclusion 
This paper proposes the optimization of the discharge chamber cross-sectional shape in the MPD thruster, using 

a 2-dimensional axially symmetric plasma model, where only flared cross sections of the chamber were allowed. It 
was shown runs that this optimization process is possible by 178 CFD. The total number of CFD calculations was 
greatly reduced, indicating that this procedure is feasible for optimizing such chambers in the given problem. 

The authors hope to resolve the problems remaining in this analysis code and apply it to discharge chambers of a 
variety of types besides flared shapes. 
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