Electric Propulsion Cables for milli-Newton Thrusters

axon

Axon's Electrical interconnection solutions across a satellite

2

Initial Situation

Mobile plate

Ion thrusters (x2)

Satellite structure

Multi-layer insulation

•Thrusters are mounted outside satellite, exposed to

- Extreme temperatures (high and low)
- Vacuum (no convective cooling)
- Ionizing radiation
- High energetic particles (heavy ions, protons)

Initial Situation (cont.)

Actual technology

- not suitable for future missions in temperature requirement
- the Relay Box create vibrations.
- Mineral rigid type cable (heavy too).
- not enough performant.

Requirement Specification

Electric Requirements

max. continous operating voltage (derating included)	5kV
max. operating current	12A
conductor gauges	AWG 16 - AWG 4
immunisation	against ESD

Requirement Specification

Temperature requirements

		Static application	Dynamic application
Operating	min °C	-50	-20
temperature	max°C	280	120
Non operating	min °C	-100	-50
temperature	max °C	200	120

Radiation levels

The cable shall be designed to withstand a radiation level of 200MRad.

Requirement Specification

Geometrical Requirements

Proposed technology

flexible, one piece solution

Advantages included

- environmentally improved
- Weight gain
- Less vibrations
- Simplified integration

9/5/2011

Potential solutions

• Selected conductor

• 19x0.511 Unilay

- Specific alloy
- Specific construction
- Specific coating
- Results statement
 - ✓ Good mechanical stability when exposed to very high temperature (short exposition)
 - Good mechanical and electrical stability when exposed for long time to high temperature
 - ✓ Design suitable for High voltage application
 - ✓ Good flex life

Potential solutions 2. INSULATION

Many special tests have been performed during evaluation

Critical test plan

* Ageing phases were combined to high voltage.

** HV/HT tests: high voltage breakdown at high temperature.

Radiation dose profile

9/5/2011

11 1

12 - 30/03/2011

What is a partial discharge ?

- A gas discharge which does not bridge the system electrodes
 - Discharge in a cavity
 - Corona off an electrode
 - Tracking discharge along an interface
- Cavity before and after discharge

• Partial discharge testing can detect:

- Insulation defects that may have occurred during cable system installation or the manufacturing process
- Insulation deterioration due to normal service operating conditions

Partial discharge testing is a <u>PREDICTIVE</u> qualitative analysis tool that can warn of a potential <u>UPCOMING</u> system failure.

PD & HV testing equipment

Complete evaluation with different ultra polymers :

- PTFE (PolyTetraFluorEthylen) and family range (PFA, MFA, FEP..)
- PEEK (PolyEtherEtherKetone) and family range
 - (PEK , PEKK, ...)
- PI (Polylmide) family range (PI, TPI, PBI..)

Selection of insulation summary

- Only one material and one reference fulfill the requested combined criteria's :
 - Temperature range : -100 °C / 280°C
 - Operating voltage of 5KVDC
 - Radiation resistance : 200Mrads
 - Dynamic application (as shown before)

Potential solutions 3. SPECIFIC SEMICONDUCTIVE LAYER

-ESD protection by evacuation of the discharges-thermal protection screen-helps to prevent against radiation as well (...to some extent)

The evaluation is done with an equivalent tape than the "original" one due to ITAR reasons and the reason that there will be a CNES & ESA evaluation on an european carbon nanotube tape starting in Sept. 2011.

Potential solutions

4. SHIELDING

Test criteria of shielding

subject	result / conclusion
material selected	same alloy as for conductor
test targets for construction	flexibility performance of cable
	almost not to be reduced
	braid with coverage >90%
make of shielding	different conductor sizes
	have been tested
results	ageing & radiation tests showed
	acceptable results with evaluated braid

The target of this study as presented was to develop & validate the use of this product for space.

This had been shown through all tests done during the project.

Now, the product is available on request.

9/5/2011

- www.axon-cable.com
- <u>m.jakob@axon-cable.de</u>

This study is carried out under a programme of and funded by

