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Two-fluid analytical models of hypersonic plasma plumes, which are of great relevance
in many applications, including a recently presented space debris deorbiting system based
on plasma beams known as Ion Beam Shepherd, are discussed. A generalized framework
to derive self-similar models is provided, from which three particular models proposed in
the literature are derived and compared. It is demonstrated that strict self-similarity is
incompatible with the two-fluid model. The three existing models provide only quasi self-
similar solutions, based on a constant axial velocity and the order of the error is one over
the square Mach number. A preliminary analysis of the effects of the ambient magnetic
field on the plume is carried out, pointing out that resistivity, plasma-induced fields and
the 3D geometry of the plasma provide three mechanisms that counter magnetic deflection
of the plume.

I. Introduction

Hypersonic plasma plumes expanding in vacuum are ubiquitous in space electric propulsion: plasma
thrusters of every type produce high-velocity plasma beams of different characteristics during operation.1 In
the space environment, plasma plumes are also created by plasma contactors,2 used to control the electric
charge of a spacecraft and to emit electrons from electrodynamic tethers to the surroundings. Plasma plumes
of different sorts (e.g. created by pulsed laser ablation) are also important in industrial processes.3

Quick analysis and characterization of the plasma plume is paramount in preliminary design cycles of
multiple applications, such as optimizing thruster orientation in the spacecraft to avoid plasma impinge-
ment on solar panels in geostationary satellites and other satellite parts,4 identifying the relevant thruster
parameters that dictate the beam divergence, or understanding plasma-surface interaction and deposition
in industrial applications.3 In these tasks, a fast and simple plasma model which is able to provide enough
accuracy and detail of the different physical processes becomes a valuable tool. There exists an ample variety
of models ranging in complexity and precision, from single-fluid, conical expansions5 that yield rough ana-
lytical approximations to fully numerical particle models6,7 that can reproduce detailed physics. In between,
there exist a family of models8–10 which depart from the same initial two-fluid equations, in which analytical
solutions are achieved through claimed self-similarity. These so-called self-similar models (SSM) constitute
an adequate trade-off between complexity and accuracy, and show good agreement with experimental results
of both ion and Hall effect thrusters.1,11,12

An innovative application of plasma plumes of particular interest which has motivated the present work
can be found in a space debris removal system which has been recently presented by our group.13–16 Space
debris constitute one of the main threats for continued commercial and scientific exploitation of space.17

In the aforementioned removal concept, large pieces of space debris are deorbited using a plasma beam
mounted on board of a controller spacecraft, known as Ion Beam Shepherd (IBS) and sketched in Fig.1.
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The plasma plume from an electric thruster is directed towards the target debris to exert a continuous
deorbiting force, which under nominal operation is close to the thrust produced by the thruster. In this way,
the technologically-challenging docking maneuver with an uncooperative, tumbling object is avoided. The
IBS is equipped with a second propulsion system that counters the thrust produced upon it by the plasma
beam. As the IBS transmits momentum to the debris, it accompanies it during the deorbiting operation
while maintaining close formation flying, until delivering it to the desired reentry orbit (or to a disposal
orbit). The SSM models object of this paper are being used in the study of the IBS system.
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Figure 1. Schematic of ion beam shepherd satellite deorbiting a space debris

The main goal of this paper is to provide a generalization of SSM of plasma plume expansion in vacuum,
by establishing a single two-fluid model framework and its solutions based on variable separation. This
framework, which can also be used as the starting point for the derivation of other SSM, is presented in
section II. We demonstrate that rigorous self-similar solutions of the two-fluid model do not exist unless the
ion axial momentum equation is simplified for hypersonic flows. The local error in this equation is measured.
We focus our attention in a subset of SSM which assumes constant axial velocity along ion streamlines. The
three individual models of Parks and Katz,8 Ashkenazy and Fruchtman9 and Korsun and Tverdokhlebova,10

which all belong to this group, are then particularized from the general equations and discussed in detail in
subsections A and B, showing that actually none of them is strictly self-similar.

The rest of this work is devoted to the analysis of the influence of external magnetic fields on the
development of the plasma plume. Magnetic fields, if strong enough, might deflect the plasma beam. The
inclusion of these effects breaks the quasi-self-similarity of the hypersonic plume, and the analysis of the
resulting problem becomes a complex 3D problem since different phenomena need to be taken into account
simultaneously, including (1) the effects of cross-field diffusion via resistivity, (2) the role of the induced
magnetic field, and (3) the finite width of the plasma beam. A preliminary study of these effects is carried
out in section III, based on the solution of the unperturbed plasma plume from SSM.

Finally, section IV summarizes the main points of this work.

II. Expansion of a hypersonic plasma plume in vacuum

As the high-velocity plasma abandons the thruster chamber, a plasma plume forms and expands into
space. The plume can be divided in two regions. First, close to the thruster, plasma inhomogeneities and
thruster electromagnetic fields dominate the expansion. In the case of gridded ion thrusters, the beam is
initially formed by numerous beamlets, produced by each aperture in the grids, which soon coalesce into
a single-peaked plasma profile, typically in a distance less than a thruster radius.18 The grids and the
neutralizer electric fields influence the initial stages of expansion. Hall thrusters, on the other hand, produce
an initially annular beam, with strong magnetic fields still present after the thruster exit section. These
fields play a role in the final ion acceleration stages. The plasma profile becomes single-peaked after about 2
thruster radii away from the exit plane.19 In this region, which can be termed near-field ,20 plasma modeling
is a complex task, and usually full numerical models are required for its study. The initial divergence angle
of the beam results from the processes taking place in this region.

After this initial expansion region, a smooth, bell-shaped plasma profile is established. Thruster fields
and most plasma interactions become negligible: the plasma plume continues to expand under the action
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of its residual pressure and the internal ambipolar electric fields, forming a proper plasma plume. This far-
field21 region is relevant to various plasma applications, and is susceptible of being described with simplified
models, such as the SSM derived below. In the following, we derive the general SSM equations for a plasma
plume starting from the fluid equations of ions and electrons.

The steady-state, axisymmetric, quasineutral plasma plume is assumed non-collisional, non-rotating,
globally current-free, and formed by single-charged cold ions (i) and hot electrons (e). Here, we assume
that it expands into vacuum with no ambient magnetic field. A cylindrical coordinate system (z, r, θ), with
z along the plume axis and the origin placed on the plume centerline at an arbitrary initial plane in the
far-field, will be used for the description of the plasma plume.

Under the aforementioned assumptions, the following fluid equations govern the plasma:

uzi
∂ lnn

∂z
+ uri

∂ lnn

∂r
+
∂uzi
∂z

+
1

r

∂ (ruri)

∂r
= 0, (1)

uzi
∂uzi
∂z

+ uri
∂uzi
∂r

+
e

mi

∂φ

∂z
= 0, (2)

uzi
∂uri
∂z

+ uri
∂uri
∂r

+
e

mi

∂φ

∂r
= 0, (3)

1

n
∇nTe − e∇φ = 0, (4)

where n, uzi, uri are the plasma density and the ion velocity components in the z, r direction, φ the electric
potential, and nTe the electron pressure. In the electron momentum equation (Eq. 4), electron inertia has
been neglected.

These equations need to be complemented with an equation of state for electrons. We will assume a
polytropic relation:

pe = pe (n) = pe0
nγ

nγ0
, (5)

where γ is the effective specific heat ratio of electrons and the subindex 0 denotes variables at the origin.
According to experimental results,22 γ is close to 1, meaning that electrons evolve almost isothermally along
the plume, Te = const. This results from the large electron thermal conductivity in the plume, which tends
to homogenize the temperature everywhere. For γ > 1 the electron momentum equation (Eq. 4) can be
rewritten as:

γ

γ − 1

Te0

nγ−10

∇nγ−1 − e∇φ = 0. (6)

The isothermal limit corresponds formally to γ → 1, for which Eq. 4 results in Te0∇ lnn− e∇φ = 0.
All these equations can be normalized using Te0 (electron temperature at the chosen origin), mi (ion

mass), e (elementary electric charge), n0 (particle density at the origin), and the characteristic length R0,
which will be defined as the radius of the plasma tube at z = 0 containing a specified fraction of the total ion
flux of the plume (in particular, the tube containing 95% of the flow, since this tube is used conventionally
to define the plume divergence angle). In the following, dimensionless variables will be denoted with a hat,

e.g., φ̂ = eφ/Te, ûzi = uzi/
√
Te0/mi.

These equations constitute the starting point for the variable-separation SSM considered here. These
SSM are based in two fundamental assumptions: first, that all ion streamlines ri (zi) expand likewise, so
they can be expressed through a dimensionless self-similarity function h (ẑ),

r̂i (ẑi) = r̂i0h (ẑi) , (7)

where ri0 is the radius of the streamline at ẑ = 0, and h (0) = 1. It follows that ion velocity components are
related by the expression

ûri = r̂
h′

h
ûzi. (8)

Second, it is assumed that flow variables ûzi and n̂ can be separated as

ûzi (ζ, η) = uc (ζ)ut (η) ,

n̂ (ζ, η) = nc (ζ)nt (η) , (9)
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where ζ and η constitute a new coordinate system, with

ζ = ẑ, η =
r̂

h (ẑ)
. (10)

This separates the axial evolution of the variables at the centerline (functions with subindex c) and their
radial profiles (subindex t). On the z-axis, ut (0) = nt (0) = 1. Notice that uc (0) =

√
γM0, with M0 =

uzi (0, 0) /
√
γTe0/mi the Mach number at the origin.

Introducing this solution in the continuity equation (eq. 1) yields:

h2ncuc =
√
γM0, (11)

Similarly, momentum equations 2 and 3 reduce to:

ucu
′
cu

2
t + γ (ncnt)

γ−2
(
n′cnt − ncn′tη

h′

h

)
= 0, (12)

huc (uch
′)
′

nγ−1c

= −γn
γ−2
t n′t
ηu2t

= γC, (13)

where C is a separation constant.
The set of equations 11–13 is in general incompatible with the selfsimilarity assumption, eq. 7, and the

solution structure imposed in Eq. 9. This is reflected by the fact that eq. 12 is not separable in the same
fashion as 13: in fact, fulfillment of this equation can be subdivided into (1) satisfying it at the centerline,

ucu
′
c + γnγ−2c n′c = 0, (14)

i.e., Bernoulli relation for the conservation of energy in this streamline,

u2c
2

+
γ

γ − 1
nγ−1c =

γM2
0

2
+

γ

γ − 1
,

(u2c/2 + lnnc = M2
0 /2 for isothermal [γ = 1] flows); plus (2) the following conditions resulting from equating

to zero the η-derivative of Eq. 12:

n′c
nc

h

h′
= − 2n′t

2ntu′t/ut − (γ − 1)n′t
= D, (15)

i.e.,

nc = hD, (16)

n
2−D(γ−1)
t = u−2Dt , (17)

with D another separation constant. Expressions 11, 13, 14 and 15 contain 6 equations for the 5 variables
h, uc, ut, nc and nt, so the problem is over-determined. Indeed, rewriting Eq. 14 with the assistance of
expressions 11 and 16, [

− (2 +D) γM2
0h
−(5+2D) + γDhD(γ−1)−1

]
h′ = 0, (18)

it turns apparent that to vanish the term in brackets requires D = −4/ (γ + 1) and M2
0 = −2/ (γ − 1), which

yields M2
0 < 0 for γ > 1 (and M2

0 → −∞ for γ → 1). This nonphysical result manifests the nonexistence of
rigorous self-similar solutions of this sort.

Therefore, any of these SSM of a plasma plume is only an approximation of the real flow. However, the
advantages of having a simple, semi-analytical model encourage elaborating SMM further. To proceed with
the derivation of an approximated SSM, it is unavoidable to free one of these constraints, or perform an
adequate assumption about the variables.

It follows from Eq. 14 that when the flow is highly hypersonic Mz � 1, the axial velocity variations along
streamlines are small compared to velocity itself: ∆Mz/Mz ∼ ∆ lnn/M2

z � 1, where Mz = uzi/
√
γTe/mi

is the local axial Mach number of the flow. Taking advantage of this, a common approach of existing SSM
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for hypersonic plasma plumes consists in substituting ion axial momentum Eq. 2 for an adequate expression
for uc and ut instead. The relative local error ε (ζ, η) committed by this substitution can be evaluated with
the dropped equation:

ε (ζ, η) =
ûzi∂ûzi/∂ẑ + ûri∂ûzi/∂r̂ + γn̂γ−2∂n̂/∂ẑ

û2zi
= (19)

=
u′c
uc

+
γ (ncnt)

γ−2

u2cu
2
t

(
n′cnt − ncn′tη

h′

h

)
=
u′c
uc

+
1

M2
z

(
n′c
nc
− ηh

′

h

n′t
nt

)
,

where the first part of the error in the right hand side is (lnuc)
′
, and the latter is ∝ 1/M2

z . Therefore, if
uc = const is assumed, this error is arguably small for actual ion or Hall thruster plumes (for which M0 > 20,
see Ref. 23).

A. Family of models with uc = const

The most relevant family of SSM substitutes Eq. 2 with the condition uc =
√
γM0 = const and an additional

hypothesis for the ut profile. As explained above, this is appropriate for hypersonic flows, since uzi varies
very little along the axis. The uc = const condition means that plasma axial velocity along streamlines is
frozen, and hence the first part of the error in equation 19 vanishes.

Continuity Eq. 11 leads to

nc =
1

h2
. (20)

Then, the first equation of expression 13 produces a ordinary differential equation for h:

h2γ−1h′′ =
C

M2
0

. (21)

Integration of Eq. 21 yields

h′ =

√
δ20 −

C

M2
0 (γ − 1)

(
h−2(γ−1) − 1

)
(22)

for polytropic γ 6= 1 flows and

h′ =

√
δ20 +

2C

M2
0

lnh (23)

for isothermal γ = 1 flows. In these expressions and below, δ0 = h′ (0) is the tangent of the velocity at ζ = 0,

η = 1. Notice that this can be further integrated as
´ h
1
dh/h′ = ζ, from where h is implicitly defined. In the

polytropic case, h′ →
√
δ20 + C/ [M2

0 (γ − 1)] far downstream; for the isothermal case, h′ →∞.
Equations 20 and 21 determine nc and h. It only remains to set ut and nt. The second equation in

expression 13 provides a relation between the two:

lnnt = −C
ˆ η

0

ηu2tdη (24)

for isothermal γ = 1 flows and

nγ−1t = 1− (γ − 1)C

ˆ η

0

ηu2tdη (25)

for polytropic flows. This expression reveals the existence of a ηmax ∈ [0,∞[ beyond which nt = 0 for
polytropic flows, whereas ηmax =∞ in an isothermal plasma. The local error ε committed can be expressed
as:

ε =
C

M2
0

h′

h2γ−1
η

(
2
nt
n′t

+ η

)
. (26)
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This expression reveals that the error is proportional to h′′h′, and points out that to completely vanish
the local error, the density profile should satisfy n′t = −2/η3. However, this represents an unpractical case
with density becoming singular at η = 0. There is nevertheless a streamline η∗ = −2nt/n

′
t for which the

local error is zero.
Particular models can now be derived choosing a profile for ut, which then determines nt. From among

the models of this family, (1) the Parks and Katz model (PK),1,8 (2) the Ashkenazy and Fruchtman model
(AF),9 and (3) the Korsun and Tverdokhlebova model (KT)10 are reviewed below. The PK and AF models
are generalized to the non-isothermal case.

The PK model takes ut = 1 = const which leads to:

nt = exp

(
−C η

2

2

)
(27)

for isothermal flows (γ = 1) and

nt =

(
1− (γ − 1)C

η2

2

)1/(γ−1)

(28)

for polytropic flows. The local error ε and zero-error streamline η∗ for this model can be reduced to:

ε =
C

M2
0

h′

h2γ−1

(
η2 − 2

C

)
; η∗ =

√
2

C
. (29)

In the case of the isothermal flow, a practical choice of constant C can be made to have the ion flux
inside the r ≤ R0 tube, Gi (η = 1), equal to 95% of the total beam flux. Integrating over the initial plane,
one has

Gi (η = 1)

Gi (ηmax =∞)
= 1− e−C/2 = 0.95⇒ C = −2 ln 0.05 ' 6. (30)

In the polytropic case C can be calculated likewise, with ηmax =
√

2/ [(γ − 1)C] the last plasma stream-
line.

The AF model, on the other hand, employs a conical velocity profile at the initial plane, ζ = 0, so that
ut is given by

ut =
1√

1 + η2/d̂2
, (31)

with d̂ a parameter that represents the dimensionless distance from the cone vertex used to define the flow
to the initial plane, which is related to the velocity tangent at ζ = 0, η = 1 as d̂ = δ−10 . Expression 31 for ut
produces the following profile nt:

nt =
1[

1 + η2/d̂2
]Cd̂2/2 ; ε =

C

M2
0

h′

h

(
η2 − 2

1 + η2/d̂2

C

)
; η∗ =

(
C

2
− 1

d̂2

)−1/2
, (32)

for isothermal flows. Here, it is seen that error dependence with η disappears when d̂2 = 2/C. For this case,
η∗ is not defined. For the polytropic flow, one has:

nt =

1−
Cd̂2(γ − 1) ln

(
1 + η2/d̂2

)
2

1/(γ−1)

, (33)

ε =
C

M2
0

h′

h2γ−1

[
η2 − 2

1 + η2/d̂2

C
+ (γ − 1)

(
d̂2 + η2

)
ln

(
1 +

η2

d̂2

)]
, (34)

and, the zero-error streamline η∗ can be determined numerically equating to zero Eq. 34. Again, constant
C can be set to locate the 95% flux tube at η = 1. For the isothermal case one has:

Gi (η = 1)

Gi (ηmax =∞)
= 1−

(
1 +

1

d̂2

)(1−Cd̂2)/2
= 0.95. (35)
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Finally, the KT model is based on the fulfillment of condition 17, resulting in the following profiles for
nt and ut. The separation constant D in Eq. 16 is chosen D = −2, in agreement with continuity Eq. 11:

nt =

(
1 + C

η2

2

)−1
, (36)

ut =

(
1 + C

η2

2

)−γ/2
. (37)

The value of C this time is given by:

Gi (η = 1)

Gi (ηmax =∞)
= 1−

(
1 +

C

2

)−γ/2
= 0.95, (38)

for both the isothermal and polytropic cases. The local error is now independent of η:

ε =
−2

M2
0

h′

h2γ−1
, (39)

so that there is no zero-error streamline η∗ in this case. This model coincides with the AF model when
d̂2 = 2/C = δ−20 in the isothermal case. It is noted here that Korsun and Tverdokhlebova10 also present a
variant of their model in which uc is not constant. However, in that case, the first term of the ε error in
Eq. 19, which is not proportional to 1/M2

0 , is not zero. Here, we have chosen to limit our attention to the
constant uc case, for which that error term is null.

As a final note to conclude this section, other models of this type can be derived by simply imposing the
desired profile for ut or nt and calculating the other variables from it. The error ε can be used to measure
the quality of the model.

B. Discussion of the three models

This section compares the three models in the isothermal case. The models developed in the previous section
depend on two parameters, M0 and δ0, that reflect the influence of the thruster and the phenomena taking
place in the near-field. These parameters control the shape of the h function that defines the streamlines of
the flow, as depicted in Fig. 2. As it can be seen, the Mach number plays an important role in the divergence
increase rate of the plume. Actually, M2

0 is basically the thermal-to-kinetic energy ratio of the beam,

M2
0 ∼

miu
2
i

Te
, (40)

and hence dictates the radial expansion of the plasma. Clearly, the plume is not conical, although for
sufficiently small distances, its shape can be adequately approximated by a cone. From Eq. 23 for an
isothermal plasma, it can be said that the plume around position ζ = ζ∗ departs little from a cone while
ln (h/h∗)�M2

0 δ
2
∗/ (2C). Hence, h ' h∗ + δ∗ (ζ − ζ∗) up to distances of the order ζ − ζ∗ ∼ ∆ζcrit:

∆ζcrit =
exp

(
M2

0 δ
2
∗/ (2C)

)
− 1

δ∗
h∗,

which increases with M0, δ∗ and h∗. This shows that plume curvature decreases as it expands, since the
conical approximation is better suited the larger ζ∗ is.

The profiles for n̂, n̂ûzi, and n̂ûri for the three models derived in the previous section are plotted in
figures 3, 4 and 5 for a representative isothermal plasma (M0 = 20 and δ0 = 0.2). It is seen that both PK
and AF models yield very similar profiles. A stronger difference is observed with respect to the KT model
where the η = 1 streamline diverges much faster. The reason for this resides in the different plasma axial
fluxes n̂ûzi produced by each model as explained below, and the condition of 95% flux at η = 1 used to
calculate C produce a plasma density profile that decays much more rapidly in the radial direction than in
the other models.

One of the key differences between the models is their axial flux profile ntut. This is more easily studied
in sight of the flux integrals for the three models of Fig. 6. For instance, in the isothermal PK model, flux
decreases exponentially with η. In contrast, KT flux decreases algebraically with η, producing a flux profile
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Figure 2. Shape of the plume streamlines (h function) for different values of the Mach number M0 and the
initial divergence angle δ0. In Fig. (a), δ0 = 0.2, and in Fig. (b), M0 = 20.

Figure 3. Results for PK model with isothermal electrons (γ = 1) and δ0 = 0.2, M0 = 20. Logarithm scale has
been used for the plots. The white line in each graph denotes the η = 1 streamline, dictated by the h function.

with thicker peripheral plasma, giving rise to the large differences in the figures with respect to the other
models. Interestingly, the AF model coincides with PK for d̂→∞, since

ntut|AF =

(
1 +

η2

d̂2

)(Cd̂2+1)/2
−→

(d̂→∞)
exp

(
Cη2

2

)
= ntut|PK ,

(although for finite d̂, the dependency with η is always algebraic); and on the other hand, it coincides with

KT when d̂2 = 2/C = δ−20 (d̂ ' 0.05), and the flux also exhibits a slow decrease with η [for the presented

case with d̂−1 = δ0 = 0.2, d̂ is large and AF model closely resembles PK in Fig. 6].
When calculating C with a condition like Eq. 30, we are radially contracting the plasma solution to fit

95% of the total flux in the η = 1 streamtube. The large value of C required for this in the models with
more dense peripheral plasma implies a fast increase of the divergence angle, and strongly-peaked plasma
profiles at the origin. Hence, in order to have a more convenient plasma profile with KT and large-δ0 AF,
it is suggested to use an alternative condition to define C, such as a given n/n0 fraction at η = 1 (with the
inconvenience of having a significant fraction of the plasma flux at large η, which might be undesired for
some applications).

The relative local error ε of each model is presented in Fig. 7. The error of PK is small and displays
a zero-error streamline. The quality of the solution deteriorates for large η. This is not an issue for most
applications concerned with plasma momentum flux, as the momentum transported by the plasma far from
the centerline is negligible. However, it can be a problem when the variable of interest is the plasma density
or the local velocity components of ions in that region. The error is η-independent for the KT model (and
the AF model when it coincides with it), showing that this model can have advantages for applications
where plasma density outside of the bulk of the plume is important. As discussed above, AF model behaves
similarly to PK for small values of δ0, although it approaches the behavior of KT model for larger δ0.
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Figure 4. Results for AF model with isothermal electrons (γ = 1), δ0 = 0.2 = d̂−1 and M0 = 20.

Figure 5. Results for KT model with same conditions as Fig. 3 and 4.

III. Influence of external magnetic fields

The plasma expansion studied in section II can be altered by the environment. In particular, two
phenomena influence the development of the plume: (1) collisions with ambient plasma, and (2) the presence
of an external magnetic field.

Needless to say, the inclusion of any extraneous effects such as these breaks the quasi-selfsimilarity of
the model. Accurate simulation of collisional and magnetic effects requires the use of full numerical models,
which lack the advantages in terms of speed and simplicity of a SSM. In this section, a preliminary assessment
of the influence of these effects is carried out based on the solution obtained for the plasma plume expansion
in vacuum.

The plasma plume loses momentum to the environment through collisional processes with background
particles. As a result, the plume is progressively decelerated (eventually, until both plume and background
velocities coincide), and the divergence rate of the beam is increased. Collisions with the stationary ambient
(uza � uzi, with uza the mean velocity of ambient particles) can be evaluated from the ion axial momentum
equation

uzi
∂uzi
∂z

+ uri
∂uzi
∂r

+
e

mi

∂φ

∂z
= −νiauzi, (41)

where νia is the effective collision frequency of ions with the ambient particles. From here, it is seen that
as long as νiaLM0/

√
Te/mi � 1, collisional effects over distances in the order of L can be neglected. In

practical electric propulsion systems in space (ambient density na ' 1010 m−3 in low Earth orbit), L ∼ 1 km
or larger, and therefore ambient particles exert a negligible effect. This might not be the case for industrial
and vacuum chamber testing applications, where the vacuum quality might be low.

Magnetic fields can cause the deflection of the plasma plume, which tends to align with the direction of B,
breaking the existing axisymmetry. They can also channel the plume and limit its expansion, in a somehow
similar fashion to a magnetic nozzle.24 In order to take place, magnetic deflection of the plume requires the
existence of a plasma current density, j = en (ui − ue), so that a force density j ×B is generated on the
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Figure 6. Integrated ion flux Gi (η) =
´ η
0 2πηn̂ûzidη in the isothermal case, normalized with Gi (ηmax = ∞), for

the three models (PK black, AF blue, KT red; the black and blue lines are indistinguishable at the scale used).
A representative initial divergence δ0 = 0.2 has been chosen for these images. The condition of 95% flux at η = 1
has been imposed for all models. The black (PK model) and blue (AF model) lines are very close to each other
for low values of δ0. The flux of PK and KT models is independent of δ0, but it is not so for AF: as δ0 increases,
AF separates from PK and approaches KT (red line), perfectly coinciding with it when d̂2 = 2/C = δ−2

0 .

Figure 7. Relative local error ε of each isothermal model as defined in Eq. 19.

plasma. In the presence of a homogeneous external magnetic field B, plasma currents parallel to ui×B can
be induced as the positive and negative charges react differently to the field. These currents then interact
with B and can lead to a net force in the direction (ui ×B)×B that acts on the plume and tends to bend
it until ui ‖ B.

If magnetic deflection occurs, it is important to assess over what distances the plume can be considered
straight for practical purposes, and what plasma parameters govern the interaction. This is of particular
interest in the plasma plume of the IBS concept described in the Introduction, where the goal is to direct the
plasma against a target space debris, and a safe distance to the object must be kept. Similarly, in vacuum
chamber testing of plasma thrusters, magnetic effects can be responsible of a non-negligible beam deflection
and hence a perturbation of the measurements if not compensated (see for example Ref. 25).

For propulsive applications, it is interesting to note that the reaction force to this deflection will be felt
by the generator of the external field B, transmitted via the induced magnetic field that the plasma currents
create. Hence, if the magnetic field has its origin in the spacecraft, the latter will suffer a secular torque. [In
the case of the geomagnetic field, the reaction is exerted on the Earth itself].

Based on their self-similar solution, Korsun and Tverdokhlebova predict a very strong deflection of keV
ion beams in low Earth orbit (B ' 0.5 G) in less than one meter.26 However, a precise evaluation of magnetic
effects requires a complete numerical model, as the introduction of a magnetic field brings about additional
phenomena related to (1) plasma resistivity, (2) plasma induced magnetic fields and (3) the finite width
of the plume, which are paramount to evaluate the plasma response. We are uncertain whether in their
analysis, Korsun and Tverdokhlebova consider or ignore the two last effects. More importantly this plethora
of effects and mechanisms destroys the axisymmetry and self-similarity of the plume, indicating that an
analysis based on SSM is not feasible.

Indeed, a SSM might be used to provide only a rough estimation in the case where the magnetic field
is coaxial with the original plume, since in this case axisymmetry is preserved. The effect of the magnetic
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force in this scenario is to impede or confine the radial expansion of the plume. Two phenomena arise that
compete with this confining effect: (1) diffusion thanks to resistivity, and (2) plasma-induced magnetic fields
that oppose the external one and weaken B. In absence of these two effects, confinement would be perfect,
with charged particles departing from their magnetic line only distances of the order of their Larmor radius.
In the following, we assess each effect separately.

To assess the importance of cross-field diffusivity due to collisions in the coaxial case we may study the
first-order effects of including a small Bz, assuming that the expansion in the longitudinal plane is basically
unperturbed. The magnetic field causes an electron azimuthal velocity component to appear as the plasma
tries to expand across the field. This can be seen in the equation of motion of electrons in the θ direction,
which after neglecting inertia reads:

eureBz − νeimeuθe = 0⇒ uθe = χHure, (42)

where νei is the electron-ion collision frequency, me the electron mass, and χH = eBz/ (meνei) the Hall
parameter of the plasma. Similarly, ions will acquire a certain rotation, although their larger inertia assures
that it will be negligible compared to electrons’. Hence, an azimuthal current density jθ ' −enχHure forms,
which becomes stronger the lesser resistivity and the stronger Bz are. Then, neglecting ion rotation and
longitudinal-plane collisions, this jθ generates a Lorentz force in the plasma momentum equation in the r
direction,

mi

(
uzi

∂uri
∂z

+ uri
∂uri
∂r

)
= −Te

∂ lnn

∂r
− eBzχHure, (43)

which tries to minimize radial expansion of the beam. Figure 8 shows the evolution of selected ion streamlines
in an idealized plasma with Te → 0 immersed in a coaxial magnetic field. It is seen that in this case a magnetic
field can be regarded as positive for certain applications such as the IBS, as the divergence of the plume can
be reduced, and therefore the plasma can be channeled.

Figure 8. Development of ion streamlines under the effects of a coaxial magnetic field (directed along the
green line). The plasma is assumed to have negligible thermal pressure (Te = 0). A divergence δ0 = 0.1, Hall
parameter χH = 20 and ion gyroradius defined with the flow velocity `i = miuzi/ (eBz) = 1000 m are used, which
are representative of a plasma plume from an ion thruster in low Earth orbit. Blue lines show ion streamlines
in the absence of any magnetic field (conical expansion, since plasma has no pressure). The plasma suffers a
confinement effect due to the presence of the magnetic field (red lines).

Comparing magnetic to inertial effects, the characteristic distance the plasma needs to travel to suffer
noticeable channeling when taking into account collisional effects is

Lm ∼
`i
χH

, (44)

where `i = miuzi/ (eBz) is the ion Larmor radius based on the axial velocity uzi. For a representative low
Earth orbit case (800 Km altitude), where B is typically less than 0.5 G, a xenon plasma with Te = 2 eV,
n0 = 2.6 ·1016 m−3, and M0 = 20, has νei ' 3.17 ·105 s−1, `i ' 1 km, and χH ' 69.34 (this large value of the
Hall parameter does not account for turbulent effects, which might increase the effective collision frequency).
Hence, Lm ∼ 14.4 m. As mentioned already, the plasma is almost collisionless, and thus resistivity diffusion
across B is expected to be small unless B is very weak. Indeed, in actual electric propulsion applications,
χH � 1, meaning low diffusion. This suggests that other effects such as the induced magnetic field can play
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a more important role than collisions, meaning that this value of Lm is conservative and in practice it will
be larger when these additional effects are taken into account.

Precise calculation of induced field effects is not possible with the present SSM models. However, a first
estimation of the induced magnetic field, Bi, can be made from Ampère’s equation below. Induced fields are
stronger the larger the azimuthal currents are. Now, neglecting resistivity and assuming jθBz ∼ Te∂n/∂r
from the electron momentum equation,

∂Bri
∂z
− ∂Bzi

∂r
= µ0jθ ⇒

Bzi
Bz
∼ µ0

nTe
B2
z

= β. (45)

Hence, the higher the plasma beta β, the stronger the induced magnetic field. For the same plasma at low
Earth orbit as before, β ' 1.61. This large value of β shows that the induced field can totally cancel out the
external field in most of the plume as long as plasma density n is large enough. The induced field therefore
reduces the confining effect of the external field in the bulk of the plume. The effect on the peripheral plasma
is however much more difficult to predict.

The study of a general case, with B at an angle α from the beam centerline, cannot be performed in
the same fashion as before, since axisymmetry breaks. However, it is interesting to observe that, for large
α angles, the finite width of the plasma plume gives rise to a third phenomenon that severely limits the
influence of the magnetic field.

In contrast to the coaxial case, where the induced currents were azimuthal and needed not leave the
plasma volume, in a general case the j ‖ ui×B currents need to traverse the whole plasma plume and then
continue into the ambient plasma. The currents required to deflect the beam are proportional to its kinetic
energy, and inversely proportional to the curvature radius of the deflected trajectories and the intensity of
the field. Provided that the background density is much lower than the beam density (typically several
orders of magnitude), fulfillment of current continuity ∇ · j = 0 demands very large velocities outside of the
plume. Therefore, electron inertial effects and collisions will strongly limit the value of the cross-beam j
that can develop, and hence the magnitude of the magnetic force j ×B that deflects the plume. The effect
is difficult to assess from our simple axisymmetric model, requiring a more detailed analysis. Ideally, in the
case of zero ambient density, a clean plasma edge, and α = 90 deg, when the magnetic field tries to deflect
ions and electrons in opposite directions a strong electric field E ' −ui ×B would appear to avoid charge
separation (Hall effect), and absolutely no currents would exist in the steady-state (see sketch in figure 9).
The E ×B drift would then allow the plasma to continue its movement completely unperturbed.

Figure 9. Sketch of an idealized, column plasma (with rectangular profile) with a clean boundary with vacuum.
the plasma moves with a velocity uzi > 0 at 90 deg with respect to the ambient magnetic field Bx > 0. To avoid
charge separation, an electric field Ey < 0 forms (Hall effect), which then allows the plasma to continue its
motion unaffected by Bx.

To sum up, this analysis suggests that magnetic effects will be weaker in low Earth orbit than previously
expected,26 especially for the large α case, as collisions and 3D geometry effects limit the development of
the necessary currents, and the induced field competes with the external one.

IV. Conclusions

In this work we have presented a generalized model framework for two-fluid quasi-selfsimilar plume
models. With it, three existing examples of SSM have been particularized and discussed. The framework

12
The 32nd International Electric Propulsion Conference, Wiesbaden, Germany

September 11–15, 2011



provides the necessary starting point to derive other models for general density profiles. The models serve
as a fast and simple tool for the preliminary design of many plasma applications, including the novel active
space debris removal concept known as “Ion Beam Shepherd”.

We have demonstrated that no rigorous self-similar and separable solutions of the fluid equations exist.
A measure of the error committed has been provided using the equation that the models fail to fulfill, and
is shown to be proportional to the inverse of the square of the Mach number, ∝ 1/M2 (in the models of
interest), and therefore they exhibit a high degree of accuracy in electric propulsion applications, where
typically M � 1.

The roles of the governing parameters of the flow, the Mach number, and the initial divergence angle,
have been quantified. It is seen that the Mach number has a strong influence on the rate at which the plume
divergence angle increases. Profiles of the plasma variables and local error for a representative case of the
three models have been calculated and compared. It is shown that two of the models are limit cases of the
model of Ashkenazy and Fruchtman9 for isothermal flows.

Additionally, a preliminary analysis of the influence of a homogeneous magnetic field on the development
of the plume has been carried out, showing that magnetic fields can deflect the plasma beam and that (1)
resistivity, (2) induced fields and (3) finite width of the plasma substantially reduce the effect of the external
field on the plume, and that therefore they need to be retained in the analysis. The distances over which
magnetic effects take place considering collisions has been roughly estimated from the plasma equations, and
the importance of the induced fields assessed with the beta parameter.
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