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A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed
inductive thruster is presented. A semi-empirical formula relating coil inductance to both
axial and radial current sheet location is developed and incorporated into a circuit model
coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed
kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial
displacement of simulated current sheets from four coils of different geometries are fit to
a two-dimensional expression to allow the calculation of the Lorentz force at any relevant
averaged current sheet location. This relation for two-dimensional inductance, along with
an estimate of the maximum possible change in gas-dynamic pressure as the current sheet
accelerates into downstream propellant, enables the expansion of a one-dimensional circuit
model to two dimensions. The results of this two-dimensional model indicate that radial
current sheet motion acts to rapidly decouple the current sheet from the driving coil,
leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum
available energy in the compressed propellant. The decreased available energy in the
compressed propellant as compared to that of other inductive plasma propulsion concepts
suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely,
and that radial compression of the current sheet leads to a loss in exhaust velocity for the
operating conditions considered here.

Nomenclature

C capacitance (F) Rp, Re plasma, external resistance (Ω)
E energy (J) Rcoil, Rcs coil, current sheet major radius (m)
FP force (N) rcoil, rcs coil, current sheet minor radius (m)
I1, I2 coil, plasma current (A) r, r̄ radial, average radial location (m)
k Boltzmann’s constant (m2kgs−2K−1) rcoil average coil radius (m)
L0, LC parasitic, accessible inductance (H) T1 upstream temperature (K)
Ltot total inductance (H) u shock velocity (m/s)
lcoil coil length (m) V, V0 voltage, initial capacitor voltage (V)
M mutual inductance (H) V volume (m3)
M Mach number z axial location (m)
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mi,mbit ion mass, slug mass (kg) z0 axial decoupling distance (m)
m(z) accelerated mass (kg) α half cone angle (degrees)
P1, P2 upstream, downstream pressure (Pa) γ specific heat ratio

I. Introduction

I t is desirable to extend the lifetime and increase the reliability of an in-space propulsion system as much
as possible since maintenance or replacement of that system becomes particularly challenging once it

has been placed into orbit. Reducing the size and mass of the propulsion system, including the propellant
required to complete a mission can permit an increase in the amount of payload as a percentage of total
vehicle mass. The high values of specific impulse associated with electric propulsion (EP) reduces the amount
of propellant needed for a given mission relative to other conventional propulsion systems.

Pulsed inductive plasma thrusters[1–3] are spacecraft propulsion devices in which electrical energy is
capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-
varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current.
Propellant is accelerated and expelled at a high exhaust velocity (O (10− 100 km/s)) by the Lorentz body
force arising from the interaction of the magnetic field and the induced plasma current.

Thrusters of this type possess many demonstrated and potential benefits that make them worthy of
continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination
issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants
are available for use when compatibility with metallic electrodes in no longer an issue. Pulsed inductive
accelerators have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there
is no fundamental reason why they would not operate on other propellants like H2O. It is well-known that
pulsed accelerators can maintain constant specific impulse Isp and thrust efficiency over a wide range of
input power levels by adjusting the pulse rate to maintain a constant discharge energy per unit pulse. It
has also been demonstrated that a pulsed inductive thruster operating in or near the regime of optimum
dynamic impedance matching can operate at a relatively constant thrust efficiency over a wide range of Isp
values. Thrusters in this class have operated at high energy per pulse, and by increasing the pulse rate they
offer the potential to process very high levels of power using a single thruster.

It has been found [1,2,4] that propellant utilization inefficiency can be a disadvantage for pulsed inductive
thrusters with a flat inductive coil geometry. One proposed solution is the use of a nozzle downstream of the
accelerating coil that injects propellant upstream onto the face of the inductive coil. This solution, however,
presents the additional disadvantage of a physical body in the exhaust path of the propellant, adversely
altering the propellant trajectory as the exhaust impacts (and erodes) the propellant injection structure.

A possible alternative solution to this problem is to alter the inductive coil geometry to better confine
the neutral propellant within the region of interest where the processes of current sheet formation and
acceleration occur. One alternative to a flat coil is a conic section or conical frustum. A flat, disc-shaped
inductive coil can be considered as a conical inductive coil with a half cone angle of 90◦, and as the half
cone angle is decreased the fraction of axial electromagnetic force on the plasma current sheet decreases
as the radial electromagnetic (pinching) force is increased. It is the purpose of this study to evaluate how
interaction of the coil with the plasma current sheet and the propellant contained within is affected when a
conical inductive coil geometry is employed. It should be noted that the effect of coil geometry on propellant
utilization efficiency lies outside the scope of this work.

The rest of this paper describes the development of a semi-empirical expression for the loaded coil
inductance as a function of the current sheet position in two dimensions, the incorporation of this new
function into a well-known circuit model [2] for pulsed inductive thrusters, and a discussion of results for
the parameter space of conical theta pinch pulsed inductive thrusters with an estimate of the axial kinetic
energy losses incurred by pinching the propellant and the possible recovery of a portion of these losses
through gas-dynamic effects.

II. One-Dimensional Inductive Accelerator Modeling

Pulsed inductive thrusters are commonly studied with the use of a semi-empirical circuit model coupled
to a one dimensional momentum equation [2]. This circuit is shown in Fig. II, where I1 is the current
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flowing in the driving circuit, I2 is the current flowing in the plasma current sheet, C is the capacitance of
the capacitor, M is the mutual inductance between the driving coil and the current sheet, L0 is the initial
(parasitic) inductance, LC is the accessible coil inductance, Rp is the resistance of the plasma, and Re is the
resistance in the driving circuit.

Figure 1. Lumped element circuit model of a pulsed inductive thruster inductively coupled to a plasma (taken
from Ref. [2]).

Figure 2. Equivalent circuit of a pulsed inductive thruster inductively coupled to a plasma used to derive a
set of governing equations to model thruster performance.

The equivalent circuit, shown in Fig. 2, can be drawn and a set of equations can be derived to model
thruster performance in terms of the electrical parameters. For this circuit, where V0 is the initial voltage
on the capacitor and V is the voltage on the capacitor as a function of time, the following equations follow
from the application of Kirchoff’s law:

dI1
dt

=
LCV − LCReI1 −MRpI2 + (LCI2 +MI1)

dM

dt
LC (L0 + LC)−M2

(1)

dI2
dt

=
M
dI1
dt

+ I1
dM

dt
−RpI2

LC
(2)

dV

dt
=
−I1
C

(3)

The equation of motion for the current sheet can be written using Newton’s second law with the force
acting on the current sheet arising from the magnetic pressure between the driving coil and the current sheet
propellant mass in the sheet accumulating according to the snowplow model.

dvz
dt

=
[
LCI

2
1

2z0
exp

(
− z

z0

)
− ρA (z) v2

z

]
/m (z) (4)

where z is the axial displacement of the current sheet from the driving coil, m(z) is the total propellant mass
in the current sheet, ρA(z) is the linear mass density distribution, and vz is the axial current sheet velocity.

dz

dt
= vz (5)

For this study, the current sheet was modeled as a slug mass where all the propellant is assumed to be
initially contained in the current sheet (ρA(z) = 0, m0 = mbit).
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Adding the lumped inductive elements shown in Fig. 2 gives the total inductance,

Ltot = L0 + LC −
M2

LC
. (6)

It can be seen from this equation that the total inductance changes as a function of time due to the time
changing mutual inductance, which varies due to the movement of the current sheet. An expression for the
mutual inductance as a function of current sheet axial position has been empirically determined [2] for a
half-cone angle of 90◦ (i.e. flat coil) and has been found to accurately represent the axial inductive coupling
behavior of ring-shaped and conical geometries as well [5, 6]:

Ltot(z) = L0 + LC (1− exp (−z/z0)) (7)

where z0 is the decoupling distance. This expression is set equal to the previous expression for total induc-
tance (Eq. 6) and solved for the mutual inductance as a function of the axial separation distance between
the driving coil and the current sheet:

M = LC exp (−z/2z0) , (8)

of which the time derivative is,
dM

dt
= −LC

2z0
exp (−z/2z0)

dz

dt
, (9)

closing the set of six first-order ODEs, consisting of Eqs. 1, 2, 3, 4, 5, and 9, that can be readily solved
numerically. Of these six governing equations only Eq. 9 must be empirically found based on the inductive
coil geometry.

III. Experiment

Experiments were performed [7] to determine the inductive coupling of conical inductive coils of various
geometries. The total inductance of each coil was measured as a function of the axial displacement of a
copper frustum that simulates the presence of a current sheet with the assumption that the current sheet
geometry will mirror the coil geometry that formed it. Two simulated current sheets were constructed for
each coil, one fitting tightly against the inner surface of the coil and the second having a different minor
radius r and major radius R to simulate radial compression (or pinching) of the current sheet. A diagram of
coil and current sheet geometry is shown in Fig. 3. Pinching motion is assumed to leave the half cone angle
α and coil length lcoil unchanged where lcoil is defined as:

lcoil = (Rcoil − rcoil)/ tan(α).

The details of the construction process can be found in Ref. [7], and we only repeat the results of the
experiment here. The coil geometries studied are listed in Table 1 and the current sheet geometries studied
are listed in Table 2.

A. A Two-dimensional Empirical Expression for Inductance

Figure 3. Geometry of the radial inductance model.
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reference α (degrees) lcoil (cm) rcoil (cm)
12 12 4.3 4
20S 20 5 4
20L 20 10 4
38 38 10 4

Table 1. Inductive coil geometries studied.

reference α (degrees) lcoil (cm) rcs (cm)
CS12 12 4.3 3.9
CS12P 12 4.3 2.5
CS20S 20 5 3.9
CS20SP 20 5 2.5
CS20L 20 10 3.9
CS20LP 20 10 2.5
CS38 38 10 3.9
CS38P 38 10 2.5

Table 2. Current sheet geometries studied.

The total inductance (Ltot) was measured at 84 locations using an Agilent 4285A precision LCR meter
and is shown in Fig. 4 as a function of axial copper frustum displacement. Values of L0, LC , and z0 were
calculated for each coil geometry by fitting these data to Eq. 7. Values for LC and z0 are shown in Table
3 for the four different coil geometries studied. As L0 represents inaccessible inductance, we associate this
value with the parasitic inductance of the driving circuit, and assume it is not significantly affected by coil
geometry.

Current Sheet LC (nH) z0 (cm)
CS12 564 2.6
CS20S 624 2.6
CS20L 450 4.0
CS38 558 3.6

Table 3. Fit parameters for various unpinched current sheet geometries.

IV. Expansion of the Model to Two Dimensions

The goal of the development of a two-dimensional expression for inductance is to be able to predict its
value at any point in the r-z domain knowing only LC , z0, N (a radial fit parameter defined in the next
section) and the coil geometry. z0 and N must be found experimentally. It is possible, yet beyond the scope
of this work, that there may be a relation of these parameters to geometry that would obviate experiment
altogether.

We begin by estimating the total inductance of a coil as the current sheet undergoes pure radial motion.
The data at z = 0 is fit well by the function

Ltot(r̄) = L0 + LC

(
1−

(
r̄

rcoil

)N)
(10)

where r̄ is the average radial position of the current sheet

r̄ =
(Rcs −∆r) + (rcs −∆r)

2
, (11)
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Figure 4. Experimentally measured total inductance for various inductive coil geometries as a function of
current sheet displacement with a typical error bar shown. Pinched current sheet trajectories are represented
as crosses and unpinched current sheets are represented as circles.

rcoil is the average radial location of the coil

rcoil =
Rcoil + rcoil

2
, (12)

and N is a parameter that depends on coil geometry. This geometry is shown in the diagram in Fig. 3.
Eq. 10 can be combined with Eq. 7, which is valid for r̄ = rcoil, resulting in a function for the two

dimensional inductance variation :

Ltot(r, z) = L0 + LC

(
1− exp (−z/z0)

(
r̄

rcoil

)N)
(13)

The exponent N is found by fitting Eq. 13 to calculations of inductance as a function of radial current
sheet compression at zero axial displacement using finite element analysis to create sufficient data points for
a fit. These results are shown in Fig. 5 along with a plot of both Eq. 13 and calculations of inductance at
an axial displacement of 5 cm.

A comparison of Eq. 13 with experimental data of the coil inductance as a function of simulated pinched
current sheet axial displacement is shown in Fig. 6. A comparison of Eq. 13 with calculated and experimental
data shows the difference to be well within the error bars.

The model in Section II can be expanded to two dimensions by replacing Eq. 7 with Eq. 13. This leads
to a new form for Eq. 8,

M = LC exp (−z/2z0)
(

r̄

rcoil

)N/2
, (14)
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Figure 5. Finite element results of inductance as a function of radial compression of current sheets at two
different axial displacements in four different coil geometries. The corresponding function Ltot(r, z) is shown
as a set of solid lines.

the time evolution of which is now,

dM

dt
=

LC

rcoil
N

N

2
r̄

N
2 −1 dr

dt
exp(−z/z0)− LC

2z0
exp (−z/2z0)

dz

dt

(
r̄

rcoil

)N/2
, (15)

With a known functional dependence of inductance on both axial and radial position, a momentum
equation can now be written for both axial and radial motion :

dvz
dt

=

[
LCI

2
1

2z0
exp

(
− z

z0

)(
r̄

rcoil

)N]
/mbit, (16)

dvr
dt

=
[
−LCI

2
1N

2rcoilN
exp

(
− z

z0

)
(r̄)N−1

]
/mbit, (17)

where vr is radial velocity. The radial position r is related to the radial velocity by

dr

dt
= vr. (18)

Eq. 17 is incomplete, however, as it neglects the radial force of the gas-dynamic pressure that, while
initially insignificant when compared to the radial Lorentz force, can eventually equal the pressure of the
magnetic field accelerating the current sheet.

A. An Estimate of the Gas-dynamic Pressure

An estimate of the gas-dynamic pressure in the propellant of a conical theta pinch pulsed inductive thruster
is needed to more accurately represent the radial component of current sheet acceleration. As an upper
bound, it is assumed that the current sheet acts as a normal shock wave moving through a volume (defined
by the geometry of the current sheet) of propellant, no energy is lost to radiation or ionization, and the total
number of particles is constant. The normal shock relation for a calorically perfect gas is:
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Figure 6. Experimental data of simulated compressed current sheets as a function of axial displacement and
the corresponding values of Ltot(r, z).

P2

P1
= 1 +

2γ
γ + 1

[
M2 − 1

]
(19)

where P2 is the pressure of the gas downstream of the shock, P1 is the pressure upstream of the shock, γ is
the radio of specific heats (taken here to be 5/3), and M is the local Mach number upstream of the shock:

M =
u√
γkT1
mi

(20)

where u is the shock velocity, k is Boltzmann’s constant, T1 is the temperature of the gas upstream of the
shock, and mi is the mass of an ion.

For the parameter space studied here the propellant within the current sheet is initially at room temper-
ature with no imbedded magnetic field, and the only unknowns are the downstream pressure and the shock
velocity. If the shock velocity is taken to be the radial current sheet velocity (u = vr), then the downstream
pressure of the propellant and its first derivative in time can be calculated as a function of time, and readily
incorporated into the two-dimensional circuit model.

The radial force of the gas-dynamic propellant pressure on the current sheet is calculated as:

FP = P22πr̄lcoil (21)

and opposes the Lorentz force in the radial momentum equation (Eq. 17):

dvr
dt

=
[
P22πr̄lcoil −

LCI
2
1N

2rcoilN
exp

(
− z

z0

)
(r̄)N−1

]
/mbit. (22)

To calculate the pressure at each time step, the derivative is included in the equation set,

dP2

dt
=
P12γ
γ + 1

mi

γkT1
2vr

dvr
dt
, (23)

bringing the total number of first order ODEs to 9.
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V. Model Results and Discussion

Results of the two-dimensional model for the four geometries and parameter space studied here are
shown in Fig. 7 along with results from the one-dimensional model where the current sheet does not radially
compress. Radial velocities are in the negative r direction, axial velocities are in the positive z direction.

Figure 7. Experimental data of simulated compressed current sheets and the corresponding values of Ltot(r, z).

The final axial velocity for the case where the current sheet undergoes radial compression is significantly
reduced compared to the case where the current sheet does not undergo radial compression. The final exhaust
velocities and their percentage decrease as a consequence of radial compression is shown in Table 4 for the
geometries studied.

Geometry 1-D vz (km/s) 2-D vz (km/s) velocity loss KE loss
12 75 27 64% 87%
20S 73 31 58 % 82%
20L 95 38 60 % 84%
38 86 57 34 % 56%

Table 4. Final exhaust velocities for various current sheet geometries.

It should be noted that we have not included any mechanism in the model for recovery of the energy
in the compressed propellant as axial kinetic energy. Although the current sheet is continually accelerated
away from any surface upon which a gas-dynamic pressure could be converted to a force, and the operational
pressures for a pulsed inductive thruster fall below the range where a physical nozzle could be employed
efficiently, we proceed with a calculation of what energy is available due to propellant compression for
conversion to axial kinetic energy (irrespective of the conversion mechanism).

The energy E in the compressed propellant is calculated as the gas-dynamic pressure P2 times the volume
V = πr̄2lcoil to which the current sheet has compressed to achieve this pressure :

E = P2πr̄
2lcoil (24)

The maximum calculated amount of recoverable energy E in the compressed propellant available for con-
version to axial kinetic energy is shown in Table 5 along with an updated loss in axial kinetic energy with
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maximum recovery of gas-dynamic energy. These data demonstrate that the axial directed kinetic energy
losses in a conical theta pinch owing to two-dimensional acceleration can be detrimental to overall perfor-
mance.

Geometry Pmax(Pa) V (m3) Emax (J) net E lost (J) % KE loss
12 8.7e3 2.0e-4 1.7 22.3 80%
20S 1.5e4 3.3e-5 0.44 21.6 80%
20L 1.3e4 3.8e-4 5.1 32.9 73%
38 7.5e3 1.4e-3 2.5 18.5 50%

Table 5. Minimum loss of kinetic energy due to radial current sheet compression.

VI. Conclusions

We have presented the development of a semi-empirical expression for the dependence of coil inductance
on current sheet position in two dimensions, and demonstrated its utility by using it to expand a one-
dimensional circuit model to two dimensions. The two-dimensional function for coil inductance can be
readily adapted to any coil geometry by experimentally determining the values for three parameters (LC ,
z0, and N). It may be possible to relate some of these parameters to geometry, however, an analytic
solution does not exist. This two-dimensional function can be tailored to any coil geometry by measuring
the inductance as a function of simulated axial current sheet displacement at zero radial displacement, and
conversely by measuring the inductance as a function of simulated radial current sheet displacement at zero
axial displacement.

Once incorporated into the circuit model, this two-dimensional relation for inductance allows the calcu-
lation of axial and radial Lorentz body forces at an averaged current sheet location. With an estimate of
how the gas-dynamic pressure of the propellant is affected by current sheet propagation, a radial momentum
equation can be written to calculate the radial acceleration of the current sheet. When this model is applied
to the parameter space for low power conical pulsed inductive thrusters, the results indicate that radial
displacement acts to rapidly decouple the current sheet from the driving coil, leading to a reduced axial
kinetic energy as compared to the case of pure axial displacement. An estimation of the available energy in
the compressed propellant shows that recovery of lost axial kinetic energy is unlikely.

The range of applicability of these results may extend to all power regimes of this thruster class as
the energy conversion process from electrical to thermal and subsequently from thermal to mechanical is
necessarily less efficient than a direct electrical to mechanical energy conversion. On the other hand, even if
radial compression represents a loss in axial kinetic energy, the extent to which the conical geometry increases
the propellant utilization efficiency remains to be explored. These competing effects suggest the existence of
an optimum geometry.
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