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Abstract: Value propositions for electric propulsion commonly revolve around system-

level metrics such as mass-to-orbit, and the portion of the vehicle mass budget devoted to 

propulsion. However, electric propulsion also has the potential to provide constellation and 

program-level benefits. This work studies the impact of electric propulsion on the robustness 

of a satellite replenishment launch date decision in a simple, zeroth order model. The results 

demonstrate that the flexibility in arrival date available when using electric propulsion for 

primary propulsion has the potential to reduce mission gap in the presence of uncertainty. 

This work additionally demonstrates that electric propulsion can provide robustness against 

marginally expanded ranges of uncertainty when compared against a chemical propulsion 

alternative. These results highlight potential, but additional work beyond this first step will be 

required to build a concrete programmatic value proposition for transitioning towards all-

electric systems.  

Nomenclature 

𝑎𝑎𝑡𝑡𝑎𝑖𝑛 = final semi-major axis attained from trajectory optimization 

𝑎𝑡𝑔𝑡 = target final semi-major axis 

𝑒𝑎𝑡𝑡𝑎𝑖𝑛 = final eccentricity attained from trajectory optimization 

𝑒𝑡𝑔𝑡 = target final eccentricity 

ℎ𝑎𝑝𝑜 = apogee altitude 

ℎ𝑝𝑒𝑟  = perigee altitude 

𝑖 = satellite inclination 

𝑖𝑎𝑡𝑡𝑎𝑖𝑛 = final inclination attained from trajectory optimization 

𝑖𝑡𝑔𝑡 = target final inclination 

𝐼𝑠𝑝 = specific impulse 

𝑀0 = mean anomaly at epoch 
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𝑟𝐸 = Earth radius 

𝑡𝐹0 = nominal legacy satellite failure date 

∆𝑡𝐹 = uncertainty in legacy satellite failure date 

𝑡𝐿0 = nominal new satellite launch date 

∆𝑡𝐿 = uncertainty in new satellite launch date 

ΔV = delta-vee, change in spacecraft velocity 

𝑋𝑠𝑡𝑎𝑡𝑒 = state error 

Ω = right ascension of the ascending node 

𝜔 = argument of perigee 

I.Introduction 

Electric propulsion (EP) enjoys growing adoption in some space market segments, such as commercial satellites 

in geostationary orbit (GEO). The motivations traditionally given for this trend are that EP can reduce mass-to-orbit 

and the portion of the vehicle mass budget devoted to propulsion. Beyond this however, EP has the potential to 

improve resilience and robustness at the constellation and programmatic level. A key example of this is the recovery 

story for the first Advanced Extremely High Frequency satellite (AEHF-1). Through the incorporation of an EP 

system, AEHF-1 was able to successfully reach its design orbit despite the failure of its primary chemical propulsion 

system. Beyond saving a single vehicle, the EP system onboard AEHF-1 positively impacted the entire constellation 

by preserving capability which would otherwise have been lost.  

This paper reports on the first steps in a study to investigate the impacts of EP on robustness and resilience in the 

context of replenishing and maintaining a satellite capability in GEO. The study explores these impacts by examining 

the robustness of the replenishment strategy to uncertainties in satellite failure and launch time in the presence of 

chemical and EP using the many-objective robust decision making (MORDM) framework [1, 2]. The key hypothesis 

in this work is that the flexibility in transfer time offered by low-thrust EP options provides added adaptability against 

uncertainties when compared with chemical impulsive transfers.  

 

II.Approach 

 

A. MORDM Analysis Framework and Tools 

 

MORDM represents a union of many-objective decision support using many-objective evolutionary algorithms 

(MOEAs) and robust decision making (RDM). The many-objective decision support component identifies high 

performing alternatives and key trades in a many-objective context for complex decision problems through a structured 

and iterative process of problem formulation, many-objective optimization, visual analytics, and ultimately negotiated 

selection. Problem formulation consists of identifying decisions stakeholders have available to them, how stakeholders 

measure value through objectives, how decisions relate to objectives through models, constraints, and sources and 

ranges of uncertainty for parameters.  

Once the problem formulation is implemented into code through the use of models, many-objective optimization 

occurs with the aid of MOEAs. This study makes use of the Borg many-objective evolutionary algorithm (MOEA) 

[3]. Borg is a state-of-the-art hyperheuristic which automatically adapts its use of evolutionary operators based on 

feedback from the search in order to accelerate convergence. The Borg algorithm is implemented into the Genetic 

Resources for Innovation and Problem Solving (GRIPS) tool: a parallelized many-objective optimization and decision 

support tool which links MOEAs with detailed spacecraft models through an application programming interface (API) 

[4-12]. Using Borg and parallel computing resources, GRIPS explores the decision space given in the problem 

formulation to find and map the Pareto-efficient frontier in the provided objective space.  

Once GRIPS and/or Borg maps the efficient frontier, RDM incorporates uncertainty analysis and scenario 

discovery to identify how the outcomes can vary given uncertainty in exogenous factors. The models used for many-

objective optimization can include well-characterized, best-estimate, probability distributions for uncertain parameters 

so that options can be evaluated against both the nominal state of the world (SOW) and a plausible ensemble of 

alternate SOWs. RDM subjects the options on the efficient frontier to additional SOWs with expanded uncertainty. 

Each member SOW in the expanded ensemble applied to the efficient frontier represents a scenario where potential 

exogenous factors affect outcomes. Thus, the uncertainty analysis step produces a mapping of how alternatives on the 

efficient frontier respond when subjected to deep uncertainty in exogenous factors. The RDM step is fundamental in 
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engineering projects as the stakeholders start posing “what if?” scenarios that might be outside of the initial set of 

well-characterized uncertainties and/or outside the scope of the traditional modeling methods used for the initial 

design. 

Scenario discovery interrogates the response to understand where alternatives meet and fail satisficing thresholds 

of performance in uncertainty-space. Satisficing thresholds are levels of performance elicited from stakeholders which 

represent satisfactory performance given the adverse influence of exogenous factors. SOWs in the expanded ensemble 

which violate satisficing thresholds are considered failing. Scenario discovery enables analysts to identify the ranges 

of uncertain parameters which most often lead to failure using processes such as the Patient Rule Induction Method 

(PRIM) or Sobol sensitivity analysis [13, 14]. PRIM, developed by Friedman and Fisher in 1998, determines 

subregions of the input space which result in high or low values, compared to the average over the input domain, for 

a given target variable. This allows the analyst to determine ranges of certain control parameters on which to optimize 

values of the target variable. Applications of PRIM are in a variety of fields including financial risk analysis, social 

sciences, and industrial process control. In this study, the RDM component of the analysis provides insight into how 

an EP constellation replenishment strategy differs from a chemical propulsion strategy when considering program-

level considerations of robustness to uncertain futures. 

The preceding analyses produce a wealth of information which analysts explore through the use of interactive 

visual analytics. By interacting with and visualizing the data, analysts discover insights from the optimization data, 

highlight key trades and regions of robustness, and communicate these results back to stakeholders. The 

communication of results back to stakeholders helps them to learn about their complex decision space. It changes their 

perception of what their decisions are, the ranges of those decisions they have available to them, how they measure 

value, what their performance thresholds are, and what their constraints are. Thus, MORDM leverages learning 

feedbacks across the framework to help stakeholders understand their decision space, and ultimately build consensus 

through negotiated selection in a structured and rigorous way. 

B. Model and Notional Problem Definition 

 

This work considers the replenishment of a legacy single-satellite GEO capability with a new vehicle via a simple, 

zeroth-order scenario. This scenario represents a first step in the modeling and analysis of both well-characterized and 

deeply uncertain parameters in a replenishment and maintenance study. The new vehicle has a nominal launch date 

given as 𝑡𝐿0, and the legacy vehicle has a nominal design end-of-life (EOL) given as 𝑡𝐹0. For this problem, the program 

manager can control the nominal launch date of the new vehicle, but cannot alter the nominal EOL of the legacy 

vehicle. The program manager’s control over the launch date is not absolute: exogenous factors such as weather, 

launch vehicle/facility availability, or schedule slips can cause delays which ultimately lead to a slip in the launch date 

away from the nominal decision made by the program manager. These exogenous factors thus create uncertainty in 

the actual launch date for the new vehicle. The program manager’s knowledge about the failure of the legacy vehicle 

is also uncertain: it can fail early or it can continue to be a usable resource long after its designed EOL. The capability 

provided by the systems is assumed to not be additive, such that there is no performance benefit to having an additional 

vehicle. In this zeroth-order scenario, the single decision to be made by the program manager is when to schedule the 

nominal launch of the new vehicle so that it arrives to replace the legacy vehicle before it fails, in the presence of 

uncertainty in when either event will happen, and with a desire to not waste useful life on the legacy vehicle.  

The domain of possible nominal launch dates is 1/1/2018 through 1/1/2023, as illustrated in Figure 1. As mentioned 

previously, the actual launch date has some uncertainty. This notional formulation assumes that the launch date 

uncertainty is well-characterized as a uniform distribution given over the range [𝑡𝐿0, 𝑡𝐿0 + ∆𝑡𝐿], where ∆𝑡𝐿 is two 

months. The nominal EOL for the legacy satellite is given as 1/1/2021, with uncertainty in the EOL well-characterized 

to a uniform distribution given over the range [𝑡𝐹0 – ∆𝑡𝐹, 𝑡𝐹0 + ∆𝑡𝐹] for ∆𝑡𝐹 equal to one year. These well-characterized 

ranges represent confidence intervals which could be identified through historical analysis for a program of record. 

Each alternative considered by the MOEA is evaluated over an ensemble of 1,000 sets of nominal launch date delay 

and legacy satellite failure times which each represent a unique SOW. The ensemble used for this evaluation is the 

same for every alternative launch date. RDM analysis expands the uniform distributions such that ∆𝑡𝐿 is six months 

and ∆𝑡𝐹 is three years. These expanded ranges represent potential deep uncertainty in the launch and failure times. 

Sources of deep uncertainty tend to be exogenous, and outside of the decision maker’s ability to measure or predict. 

Some example sources of deep uncertainty are technology maturation efforts, budgets, or user needs. The objective 

vector is: 1) minimize the average time across all evaluated SOWs where the legacy vehicle has failed and the new 

vehicle has not reached the target orbit, and 2) minimize the average time across all evaluated SOWs where the new 

vehicle has reached the target orbit and the legacy vehicle has not yet failed. These two objectives represent time when 
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there is gap in mission capability, and wasted remaining life on the legacy vehicle, respectively across a range of 

potential futures. For RDM analysis, a single nominal satisficing performance threshold is applied such that the 

replenishment strategy is considered a failure in a given SOW if there is a gap in mission of more than two months. 

This threshold is representative: programs such as those with strict data continuity requirements might have a more 

stringent threshold, whereas other programs could have a less stringent threshold.  

 

 
Figure 1. Domain of possible nominal launch dates, with well-characterized uncertainty ranges illustrated. 

 

Table 1 provides the initial and target orbital elements at launch for the new vehicle. The new vehicle begins in a 

geostationary transfer orbit (GTO), and must transfer to its final orbit with either a chemical or EP system. At the level 

of fidelity considered for this study, a chemical transfer can be assumed to be impulsive and instantaneous such that 

the new vehicle arrives at the target orbit on the day of launch. There is consequently no flexibility in when the new 

vehicle arrives when it uses chemical propulsion. In contrast, if the new vehicle uses EP it does have flexibility in 

when it arrives. It can follow a minimum propellant trajectory with long time of flight (TOF), a minimum TOF 

trajectory with high propellant usage, or some trajectory in between. Propellant usage and TOF thus represent two 

optimization objectives, and a Pareto frontier of alternative transfer strategies exist between them. 

 

Table 1. Initial and target orbital states for the new vehicle. 

State 𝒉𝒑𝒆𝒓 (km) 𝒉𝒂𝒑𝒐 (km) 𝒊 Ω 𝝎 𝑴𝟎 

Initial 12,821.86 38,421.86 10.0° 300.0° 180.0° 0.0° 

Target 35,785.86 35,785.86 0.00° Any Any Any 

 

For the EP case, the new vehicle selects a transfer off of the frontier based on the conditions at launch. If the legacy 

satellite has already failed at launch, the new vehicle takes a minimum TOF transfer to fill the gap in mission as 

quickly as possible. Otherwise, the new vehicle takes a minimum propellant transfer to conserve propellant for station-

keeping maneuvers. If the launch has been delayed from its nominal date, then the new vehicle takes the minimum 

propellant transfer which still allows it to arrive at its nominal arrival date had the launch not been delayed. 

Additionally, the new vehicle can adapt and re-optimize its transfer strategy to a minimum TOF transfer during transit 

should the legacy satellite fail after launch. This simple behavior captures the new vehicle’s flexibility when using 

EP.  

C. Trajectory Problem Formulation and EQLaw Optimization 

 

EP trajectory calculation is accomplished with an enhanced proximity quotient Lyapunov feedback control law 

(EQLaw), which can reliably generate a feasible trajectory from a starting condition to a subset of target orbital 

elements [15]. EQLaw is an extension of Q-law and shares the same ability to vary the amount of coasting in a 

trajectory with an effectivity cutoff parameter [16]. The performance of the trajectory resulting from EQLaw can be 

modified by adjusting weighting parameters on the targeted orbital elements and some scaling and constraint 

functions; this improvement is achieved by having GRIPS and Borg iterate on the element target weights.  

The specific parameters adjusted by GRIPS in this work are the weightings for semi-major axis, eccentricity, and 

inclination, as well as the effectivity cutoff parameter. Additional parameters such as the weighting of the other orbital 

elements are not optimized because these elements are not targeted in the trajectory problem. Integrating a trajectory 

with EQLaw control provides final element errors to determine transfer feasibility as well as propellant mass and 

transfer time to gauge solution optimality. The optimizer aggregates the final element errors from each element using 

Eq. (1) into a state error value to track the feasibility of transfers. This constraint on state error leads to final orbits 
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which are sufficiently accurate for the fidelity of this study, as demonstrated in the results. The transfer time for 

feasible transfers and associated propellant consumption are the optimization objectives for the current study. Initial 

mass for the new vehicle is assumed to be 4,000 kg, with the ability to thrust at 0.6 N and 1,700 s Isp. Allowing the 

optimizer to vary the effectivity cutoff can lead to options with transfer times greater than 6 months. These long TOF 

transfers are excluded from study in an attempt to account for radiation dose concerns.  

 

 

𝑋𝑠𝑡𝑎𝑡𝑒 = √(
𝑎𝑎𝑡𝑡𝑎𝑖𝑛 − 𝑎𝑡𝑔𝑡

𝑟𝐸

)
2

+ (𝑒𝑎𝑡𝑡𝑎𝑖𝑛
2 − 𝑒𝑡𝑔𝑡

2 )
2

+ [tan2 (
𝑖𝑎𝑡𝑡𝑎𝑖𝑛

2
) − tan2 (

𝑖𝑡𝑔𝑡

2
)]

2

 (1) 

 

III.Results 

 

A. Nominal Transfer Optimization 

 

Figure 2 plots the efficient frontier identified by GRIPS for the nominal transfer optimization. The horizontal axis 

plots the TOF in days, and the vertical axis plots the transfer ΔV in km/s. Color represents the effectivity cutoff 

parameter, where a value near one represents a very restrictive thrust timeline and a value of zero represents constant 

thrusting throughout the transfer. Each circle represents a different transfer profile which can be selected for the new 

vehicle depending on the conditions at the time of launch. GRIPS identified a number of transfers with high effectivity 

cutoff parameter which take longer than 180 days to complete. As mentioned previously, this study excludes these 

options in an attempt to account for radiation dose concerns. Figure 2 shows these options with transparency to indicate 

that they do not meet this applied TOF constraint.  

 

 
Figure 2. Efficient frontier of transfer options evaluated for time of flight and transfer ΔV. Color represents 

the EQLaw effectivity cutoff parameter. Transparency is applied to trajectories with TOF greater than 180 

days. 

 

Figure 3 shows how the weighting parameters and state error vary across the efficient frontier from Figure 2. Each 

line in Figure 3 represents a different transfer option represented by a colored dot in Figure 2. As in Figure 2, 

transparency indicates options which do not meet the 180-day TOF constraint. The results show that the final orbital 



 

 

The 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA 

October 8 – 12, 2017 

6 

element errors for the efficient frontier optimized by GRIPS are under 15 km in semi-major axis, 0.0021 for 

eccentricity, and 0.1° for inclination. Position on the TOF and transfer ΔV front correlates closely with effectivity 

cutoff, and loosely with the SMA weighting parameter. This indicates a weak relationship between weight application 

and the resulting trajectory for this problem, or potentially the lack of a unique set of weights to attain an optimal 

trajectory.  

 

 
Figure 3. Parallel coordinate plot indicating state error, EQLaw weighting parameters, effectivity cutoff, TOF, 

and transfer ΔV. Each line represents an option on the efficient frontier from Figure 1. Transparency is applied 

to trajectories with TOF greater than 180 days. 

B. Satellite Replenishment Efficient Frontiers 

 

Figure 4 presents three views of the efficient frontiers generated during optimization of the nominal launch time 

decision for both EP and chemical systems. Figure 4(A) shows the objective space on the horizontal and vertical axes. 

To review, the two objectives are to minimize the average times in SOWs generated with well-characterized 

uncertainty that there are 2 satellites in operation, and no satellites in operation. The population of large orange dots 

represents the efficient frontier for the EP option, and the small purple dots represent the efficient frontier for the 

chemical option. Each dot represents a different selection of nominal launch time for either propulsion option. The 

utopia point of Figure 4(A) is the bottom left of the plot. Thus, Figure 4(A) shows that EP provides a program-level 

benefit over chemical propulsion under well-characterized uncertainty. Figure 4(B) further demonstrates this by 

plotting the average time with 0-satellite objective (mission gap) as a function of the nominal arrival date for both 

options. The EP option can adapt to the realized legacy satellite failure time in different SOWs, such that for a set 

nominal arrival date the average mission gap in a mission is substantially lowered. When the nominal arrival date is 

equal to the nominal failure date of 1/1/2021, the difference in average mission gap time is 38 days in the presence of 

well-characterized uncertainty. This difference becomes more substantial when the nominal arrival date slips past the 

nominal failure date. This happens because the EP option can effectively arrive early when necessary, and later when 

able.  

The parallel coordinate plot in Figure 4(C) shows each of the parameters on the horizontal and vertical axes of (A) 

and (B) simultaneously. The range of the 2-satellite objective (mission redundancy) is the same for both propulsion 

options. This results because, as designed, the EP trajectory selection strategy does not provide a means for adapting 

to extended mission life on the legacy vehicle. In contrast, the range for the 0-satellite objective is smaller for the EP 

option. The ability of EP to adapt enables it to reduce the range of this objective value by selecting shorter TOF 

transfers when appropriate. These results demonstrate that EP can potentially offer a program-level benefit of reducing 

mission gap in the presence of uncertain launch dates and satellite failure rates. 
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Figure 4. (A) Efficient frontiers for both propulsion options, (B) Average time with 2 satellites in days as a 

function of the nominal arrival date for both propulsion options, (C) parallel coordinate plot highlighting 

important parameters. 

C. Chemical/Electric Robustness Comparison 

 

The previous section demonstrates the impact of EP on a program-level metric in the presence of well-

characterized uncertainty. Figure 5 demonstrates the impact of EP in the presence of an expanded range of deep 

uncertainty. Figure 5(A) plots the probability of meeting the 2-month mission gap satisficing threshold as a function 

of the 2-satellite objective. The results demonstrate that, for a given average redundancy in mission, EP offers a higher 

probability to have less than 2 months of mission gap than chemical propulsion in the presence of deep uncertainty. 

The maximum difference between EP and chemical options is small, at about 3 percent, but this could vary with 

additional fidelity. Figure 5(B) similarly highlights the impact of EP on satisficing probability for nominal arrival date. 

Any given nominal arrival date is slightly “safer” from a satisficing perspective for the EP option. The EP curve is 

offset from the chemical curve by roughly 3 months, which is the range of adaptability available in arrival time for 

EP as seen in Figure 2.  
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Figure 5. (A) Probability of meeting the 2-month mission gap satisficing threshold as a function of the 2-

satellite objective, (B) probability of meeting the 2-month mission gap satisficing threshold as a function of the 

nominal arrival date. 

 

PRIM analysis reveals that the failure date uncertainty dominates the launch time uncertainty in driving towards 

failure of the satisficing threshold at all points on either efficient frontier. The effect of either uncertainty source is 

likely one-for-one, but the deep uncertainty range for the failure date is much larger than the range for the launch date 

in this work. Figure 6 plots the limit of when the legacy satellite can fail relative to its nominal failure date for the 2-

month satisficing threshold to still be attainable as a function of nominal arrival date for both propulsion options. 

Below each option’s line is where the threshold can no longer be met, and above is where it can be. The plot effectively 

shows the tolerable range of failure date uncertainty given the satisficing threshold and nominal arrival date. The EP 

line is in general about one month lower than the chemical line. Although the impact is small in this case, it 

demonstrates that EP can potentially tolerate a wider range of uncertainty than the chemical option because of the 

ability to adapt. 
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Figure 6. Allowable legacy satellite failure date for the satisficing threshold to still be met as a function of 

nominal arrival time. 

IV.Conclusion 

 

Spacecraft with EP as primary propulsion have flexibility in when they arrive at their target orbit. They can arrive 

at an earlier time via a minimum TOF transfer, or at a later time via a minimum ΔV transfer. This flexibility has the 

potential to provide a program-level benefit to program managers as they plan the maintenance of their on-orbit 

capabilities. This work takes the first steps towards exploring these program-level benefits afforded by EP by studying 

a simple notional replenishment problem for a one-satellite capability in GEO. By leveraging the EQLaw trajectory 

optimizer within a MORDM analysis framework, this study examines how EP can impact the robustness of a single 

nominal launch date decision against uncertainty in actual launch date and legacy capability failure time. The results 

show that the ability to adapt to uncertain launch and failure dates can provide a concrete benefit to possible mission 

gap.  

EP also provides a modest benefit in the presence of deep uncertainty for the simple scenario provided. However, 

it remains to be seen if and to what degree the identified benefits manifest in the presence of additional fidelity, 

complexity, and considerations. Future work will open more decisions to the program manager such as specific 

impulse, and explore the impacts of EP in the context of additional programmatic considerations such as mission life. 
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