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1 The plasma flow in a Hall thruster is analyzed at the limit of intense full ionization. Momentum and

energy balance is used to obtain analytical expressions for the current utilization, for the magnitude

of the ion backflow current into the anode, and for the location of the ionization region along the

channel. Also, axial profiles of flow variables for various input parameters are found by a numerical

calculation, that is guided by the analytical expressions.

I. Introduction

Hall thrusters [1]- [3] perform with efficiencies of
more than 50% in the important range of specific
impulses of 1500-2500 seconds. There is a substan-
tial interest in improving the thruster performance
in terms of a better plume collimation, operation ex-
tending to both higher and lower regimes of power
and thrust, and variable thrust. Understanding the
structure of the plasma flow in the thruster could be
useful for accomplishing this task. In recent years
we have developed a one-dimensional steady-state
model of the Hall thruster and have demonstrated
that flows with a smooth transition to supersonic ve-
locities inside the thruster channel are possible [4]-
[7]. We have also suggested how to deliberately gen-
erate an abrupt sonic transition inside the channel
[7]. Additional aspects of the sonic transition have
been addressed by other scientists [8]- [10].

Recently, Ahedo, Martinez-Cerezo, and Martinez-
Sanchez [11] have found, for the first time theoret-
ically, a steady-state flow that includes a backflow
towards the anode, similar to the backflow claimed
in the past [12]- [13]. The backflow results from the
requirement that the Bohm condition [14] be satis-
fied at the anode. The calculation has been made
for a set of parameter values that corresponds to the
SPT-100 thruster [15]. In addition to the numerical
calculation, relations between various flow parame-
ters have been derived through an asymptotic anal-
ysis, for cases such as the case solved numerically, in
which an intense full ionization is located at a small

region along the channel.
In this paper we too address the thruster at the

parameter regime of an intense full ionization. We
adopt the boundary condition used in [11] and the
resulting backflow towards the anode. Rather than
calculating the flow for one set of parameter values
only, we derive analytically expressions for the ap-
proximate current utilization, backflow current, and
location of the ionization zone, as a function of the
gas mass flow rate, applied voltage, magnetic field
profile and thruster geometry. The analytical ex-
pressions are obtained by applying momentum and
energy conservation laws. Also, axial profiles of flow
variables for various flow parameters are found by a
numerical calculation, that is guided by the analyt-
ical results.

In Sec. II we present the model. The analytical
expressions are derived in Sec. III. Analytical and
numerical results are presented in Sec. IV. The re-
sults are discussed in Sec. V.

II. The Model

The ion dynamics is governed by the continuity
equation

d

dz
(nvi) =

d

dz
(nve) = −

d

dz
(nava) = S, (1)

and by the momentum equation

d

dz
(minv

2

i ) = −en
dφ

dz
, (2)
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where n and na are the densities of the quasi-neutral
plasma and neutral gas, vi , ve , and va are the ion,
electron, and neutral velocities, e and mi are the ion
(xenon) charge and mass, S is the plasma source,
and φ is the electrostatic potential. We assume that
the main variation in the coaxial geometry of the
thruster is along z, the axial coordinate. The ions
are assumed cold, collisionless and unmagnetized.

The axial component of the electron momentum
equation is

0 = en
dφ

dz
−
d (nT )

dz
− jθB , (3)

where T is the electron temperature, jθ is the elec-
tron azimuthal current density, B is the intensity
of the approximately radial magnetic field, and the
electron inertia is neglected. Adding Eqs. (2) and
(3) and employing Ampere’s law, (B/µ0) (dB/dz) =
jθB (µ0 is the permeability of free space), we obtain
the momentum balance equation.

d

dz

(

minv
2

i + nT +
B2

µ0

)

= 0 , (4)

which expresses the conservation of the total particle
and electromagnetic pressure along the thruster. In
the quasi-neutral plasma the electric-field pressure
is negligible relative to the magnetic-field pressure.
From the θ component of the electron momentum
equation we obtain jθB = meω

2
cΓe/ν. Here me, ωc,

ν and Γe ≡ nve are the electron mass, cyclotron fre-
quency, collision frequency and flux density. It is
assumed that ν � ωc. The more useful form of the
momentum balance equation is

d

dz

(

minv
2

i + nT
)

= −
meω

2
cΓe

ν
. (5)

The change in the particle total pressure is due to
the gradient in the magnetic-field pressure.

The equation that governs the evolution of the
electron enthalpy is

nve
d

dz

(

5

2
T

)

= enve
dφ

dz
− S(αiεi +

5

2
T ), (6)

where εi is the ionization energy and αiεi is the av-
erage energy cost for ionization ( εi = 12.1 eV and
αi = 2.5 for xenon ). Wall losses, recombination and
heat conduction are neglected. Multiplying Eq. (2)
by vi and adding the resulting equation to Eq. (6),
we obtain an equation for the total energy balance.

d

dz

(

minv
3

i

2
+

5

2
nveT + nviαiεi + jTφ

)

=

S

[

miv
2

i

2
−mivi (vi − va)

]

, (7)

where jT ≡ en (vi − ve) is the total current density.
In the next section we derive approximate analyt-

ical expressions.

III. Analytical Expressions

We assume that the mass flow rate density and
the applied voltage are large enough so that the
ionization is intense and occurs inside a small re-
gion only. The channel is thus composed of a nar-
row ionization layer, an acceleration region between
the ionization layer and the cathode (identified for
simplicity with the exit plane), and a backflow re-
gion between the ionization layer and the anode.
The division into regions and subregions has been
demonstrated in Ref. [11]. At this limit of intense
full ionization the electron flux density in the ac-
celeration region is constant and equals the electron
flux density from the cathode Γe = ΓeC . In the back-
flow region ΓeA = ΓeC − ṁ/(miA) + ΓiA, where ṁ
is the gas mass flow rate and A is the channel cross
section, and ΓiA is the ion flux density at the anode
(that results from the backflow). Although more ac-
curate approximations can be made, we here make
a simplifying assumption and neglect the small ion
momentum and electron pressure at the anode. In-
tegrating Eq. (5) across the backflow region we ob-
tain

(nT )il = −meΓeA

∫ zil

0

dzνD . (8)

Here il denotes the ionization layer, z = 0 is the
location of the anode, and we adopt the notation of
Ref. [11] νD ≡ ω2

c/ν. We neglect the small poten-
tial drops across the backflow region and across the
ionization layer, so that the ion velocity at the cath-
ode is viC = v0 ≡

√

2eφA/mi (φA is the applied
voltage). Neglecting also the small electron temper-
ature at the cathode, we obtain by integrating Eq.
(5) across the acceleration region:

ṁ

A
v0 − (nT )il = −meΓeC

∫ L

zil

dzνD , (9)

where L is the channel length and z = L is the lo-
cation of the cathode.
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An additional relation is obtained from the equa-
tion for the total energy balance, by assuming that
the ion “heating” due to ionization (the right hand
side of Eq. (7)) is small. Integrating the equation
along the channel yields:

ṁ

Ami
(eφA + αiεi) − ΓiAαiεi = jTφA. (10)

We use a third relation that is similar to that de-
rived in Ref. [11]. In the acceleration region the
ion and electron fluxes are constant. Equations (2)
and (6) then yield miv

2

i /2 + 5T/2 = eφA. At the
sonic transition, that occurs at the edge of the ion-
ization region [4]- [10], miv

2
s/2 = 5Ts/6 (quantities

at the sonic transition layer are denoted by the
subscript s). Therefore Ts = 3eφA/10 and vs =
√

eφA/ (2mi) = v0/2 . Since a smooth sonic tran-
sition requires that ionization there is not zero,
this transition has to occur close to the ionization
layer, and ns

(

miv
2

i + T
)

s
= (nT )il . Substituting

ns = ṁ/ (Amivs) and
(

miv
2

i + T
)

s
= (4/5) eφA into

this last equation yields the sought-after third rela-
tion

(nT )il =
4

5

ṁ

A
v0 . (11)

We therefore have three relations, which we write
in the following dimensionless forms:

1

5
= (JT − 1)F (1 − f) , (12)

4

5
= (JT + |Jbf |)Ff , (13)

(

1 +
αiεi
eφA

)

+ |Jbf |
αiεi
eφA

= JT . (14)

We used the definitions:

F ≡

∫ L

0

dz
me

mi

νD

v0
, f ≡

1

F

∫ zil

0

dz
me

mi

νD

v0
, (15)

and

Jα ≡
jαAmi

eṁ
, α = T, bf, (16)

where jbf ≡ eΓiA and in the case of a full ionization
we discuss here jT is

jT =

(

eṁ

Ami
− eΓeC

)

. (17)

Equations (12), (13) and (14) determine JT , |Jbf |
and f as functions of F and αiεi/ (eφA) . We note
that usually F is not really an input parameter since
νD depends on Jbf , as we discuss shortly.

The efficiency turns out to be

ηT =
1

JT
. (18)

IV. Numerical and Analytical Results

In this section we present analytical and numeri-
cal descriptions of the flow in the thruster. We start
by presenting a numerical calculation of the flow for
a set of parameter values that corresponds to the
SPT-100 thruster [15], similar to the calculation first
presented in Ref. [11]. The calculation demonstrates
the features of the plasma flow at the limit of intense
ionization, features that indeed justify the approxi-
mations that lead to the analytical results. We then
present the analytical results that are obtained from
the analytical expressions presented in the previous
section. Finally, we present two additional numer-
ical examples that exhibit the flow characteristics
predicted by the analytical results.

In the calculation we employ the following nondi-
mensional variables: ζ ≡ z/L, J ≡ nvimiA/ṁ,
V = vi/v0, ψ ≡ φ/φA, C

2
s = (5/3) Te/

(

miv
2

0

)

.
The boundary conditions are: V = −Cs and
ψ = 1 + ψsh at the anode, ζ = 0, and Te =
Te,cathode and ψ = 0 at the cathode, ζ = 1. Here
ψsh , the normalized potential drop across the an-
ode sheath, depends on the electron temperature
at the anode. We numerically solve Eqs. (1), (2),
(5), and (6) with the above boundary conditions, by
integrating the equations from the sonic transition
plane towards both anode and cathode, as described
in [4,5,7]. In Figure 1 we present the profiles of the
flow variables for the parameters of the SPT-100.
The results are similar to the results in Ref. [11],
although, for simplicity, we assume a constant cross
section flow. The magnetic field profile is shown in
Fig. 1(i) and was taken as:

B

Bmax

= exp

[

−
(ζ − ζm)2

(Lm/L)2

]

, (19)

with ζm = 0.4 and Lm = 20 mm. The normalized
total current and the total efficiency for this case are
found to be JT

∼= 1.163 and ηT
∼= 1/JT

∼= 0.85 .
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As pointed out in [11], the division into three ma-
jor regions is apparent: a diffusion region includ-
ing the anode presheath, with slow ion backflow,
low electron temperature and very low electric field,
a relatively narrow, intense ionization layer caus-
ing the electron temperature to drop (anodewise)
sharply and the ion current to increase nearly to
the maximal value possible (at full ionization), and
an acceleration region in which the plasma is al-
most completely ionized and accelerates to almost
the maximal velocity available by the applied volt-
age. The narrow ionization layer is placed between
a low temperature region at the anode side and a
no neutral region at the cathode side. This can be
seen in Figs. 1(d),(f), & (h). The sonic plane is
placed near the downstream edge of the ionization
layer where the ionization rate is just sufficiently
high to meet the regularity condition for a smooth

sonic transition. The close-to-unity propellant and
energy utilizations, J = 1 and V = 1 at the anode,
are exhibited, supporting the approximations made
in deriving the analytical expressions.

In the calculation anomalous colisionality had to
be invoked. Similarly to [11] we chose Bohm dif-
fusion with the Bohm parameter αB = 1/80. From
the numerical results it follows that electron-neutral
(e-n) and electron-ion (e-i) collisions are small rela-
tive to the anomalous collisions as seen in Fig. 1(h),
in which the νD,n profile (νD,n ≡ νD me/mi) follow
closely the magnetic field profile. Thus, in the so-
lution of the analytical model, we neglect e-n and
e-i collisions, making νD a function of the magnetic
field only. Therefore, F becomes an input param-
eter and f turns out to be a function of the axial
coordinate z solely. The location of the sonic plane
zs is found once the value of f is determined.
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FIG. 1. Calculated profiles of flow variables in the Hall thruster: A = 45 cm2,L = 50 mm, ṁ = 5.32 mg/s, φA = 300 V,
Bmax = 230 G. The sonic transition location zs is marked.
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We turn now to the discussion of the analytical
model. For a given profile of the magnetic field,
the applied voltage and the maximal intensity of
the magnetic field (Bmax), determine the parameter
space. Equations (12)-(14) are solved for JT , zs ,
and Jbf for the specified profile of the magnetic field,
as functions of given Bmax and φA. It emerges from
the analytical solution, that the location of the sonic
transition depends on the applied voltage as well as
on the magnetic field axial profile but not on Bmax.
Results of the asymptotic model are presented in
Figures 2-4 as contour maps of JT , ηT , and Jbf

on the parametric plane. The location of the sonic
transition zs is shown in Fig. 5 as a function of the
applied voltage.

As seen in Fig. 2 the total current decreases as
Bmax is increased, as expected, since Bmax impedes
the electron axial motion. On the other hand, in-
creasing the applied voltage decreases the efficiency
and JT is increased. This is the result of the addi-
tional power needed to ionize the higher ion back-
flow, as seen in Fig. 4. The location of the sonic
transition plane (Fig. 5) moves towards the anode
as the applied voltage increases. For each value of
the applied voltage there exists a magnetic field for
which Jbf vanishes. At this point JT is the min-
imal possible and ηT is maximal for that φA. No
steady state solutions exist for higher magnetic field
intensities. The line of zero Jbf bounds the region of
solution existence on the contour maps. The mini-
mal total current satisfies the relation:

JT,min = 1 +
αiεi
eφA

. (20)

The same trends of dependencies of the total cur-
rent, sonic plane location and ion backflow current
are observed in the numerical solution of the full
model. In Figure 6, we compare certain flow pro-
files of the previous case with two additional cases;
a case of lower magnetic field intensity and a case
of higher applied voltage. The neutral density is
higher in both additional cases. This is explained
by the higher ion backflow which recombines at the
anode and joins the neutral gas flow. In both ad-
ditional cases the total efficiency turns out to be
lower. The total current and efficiency are found
to be JT

∼= 1.342 and ηT
∼= 0.72 in the case of

lower magnetic field intensity, while in the high ap-
plied voltage case the values are JT

∼= 1.192 and
ηT

∼= 0.82.
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FIG. 2. Contours of equal JT in the φA − Bmax plane.
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FIG. 3. Contours of thruster efficiency ηT in the
φA − Bmax plane (ηJ ≡ ηT ).
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FIG. 5. The location of the sonic transition plane as a
function of the applied voltage.
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FIG. 6. Calculated profiles of flow variables for three
cases: the previous case shown in Fig. 1 (solid line), a
lower magnetic field case, Bmax = 115 G (dashed line), and
a higher applied voltage case, φA = 500 V (dashed-dotted
line).

V. Conclusion

The flow in the Hall thruster was analyzed at the
limit of intense full ionization. The derived analyti-
cal expressions provide better understanding of the
thruster behaviour and of the efficiency dependence
on the input parameters. The importance of the ion
backflow, as an energy consuming mechanism, was
recognized. The understanding gained by the anal-
ysis may be used in the search for improved thruster
configurations. In future studies heat conductivity
and ion loss in lateral walls may also be addressed.

These effects may reduce the calculated efficiencies
to more realistic values.
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